找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Albert Bifet,Michael May,Myra Spiliopoulou Conference proceedin

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:00:53 | 只看該作者
Listener-Aware Music Recommendation from Sensor and Social Media Dataindings on the topics of tailoring music recommendations to individual listeners and to groups of listeners sharing certain characteristics. We focus on two tasks: . (also known as serial recommendation) using sensor data and . using social media data.
42#
發(fā)表于 2025-3-28 19:29:22 | 只看該作者
Logic-Based Incremental Process Miningful framework for supporting all of the above. This paper presents a First-Order Logic incremental method for inferring process models. Its efficiency and effectiveness were proved with both controlled experiments and a real-world dataset.
43#
發(fā)表于 2025-3-29 02:35:31 | 只看該作者
978-3-319-23460-1Springer International Publishing Switzerland 2015
44#
發(fā)表于 2025-3-29 03:05:54 | 只看該作者
Machine Learning and Knowledge Discovery in Databases978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:35:58 | 只看該作者
46#
發(fā)表于 2025-3-29 12:40:49 | 只看該作者
Bayesian Hypothesis Testing in Machine LearningMost hypothesis testing in machine learning is done using the frequentist null-hypothesis significance test, which has severe drawbacks. We review recent Bayesian tests which overcome the drawbacks of the frequentist ones.
47#
發(fā)表于 2025-3-29 19:15:37 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:43 | 只看該作者
Conference proceedings 2015ence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
49#
發(fā)表于 2025-3-30 01:47:36 | 只看該作者
0302-9743 n and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.978-3-319-23460-1978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 05:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枞阳县| 西昌市| 济阳县| 瑞昌市| 巢湖市| 浦北县| 天长市| 忻城县| 永靖县| 曲靖市| 吴忠市| 滦南县| 清河县| 新疆| 新乐市| 临汾市| 喀什市| 云龙县| 平乐县| 五大连池市| 勐海县| 秭归县| 阜新| 济宁市| 绍兴市| 中宁县| 济宁市| 岑巩县| 铜山县| 湖南省| 西安市| 彰化市| 辽阳市| 栖霞市| 马龙县| 苍溪县| 贵定县| 鄂州市| 固镇县| 盐山县| 定边县|