找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Toon Calders,Floriana Esposito,Rosa Meo Conference proceedings

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 21:23:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:10:54 | 只看該作者
33#
發(fā)表于 2025-3-27 05:50:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:50:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:58 | 只看該作者
Conference proceedings 2014ers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.
36#
發(fā)表于 2025-3-27 21:51:20 | 只看該作者
0302-9743 edge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers c
37#
發(fā)表于 2025-3-28 01:19:04 | 只看該作者
38#
發(fā)表于 2025-3-28 05:45:21 | 只看該作者
0302-9743 over the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.978-3-662-44850-2978-3-662-44851-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
39#
發(fā)表于 2025-3-28 10:13:25 | 只看該作者
Conference proceedings 2014very in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the l
40#
發(fā)表于 2025-3-28 11:23:27 | 只看該作者
Robust Distributed Training of Linear Classifiers Based on Divergence Minimization Principled. The goal of this distributed training is to utilize the data of all shards to obtain a well-performing linear classifier. The iterative parameter mixture (IPM) framework (Mann et al., 2009) is a state-of-the-art distributed learning framework that has a strong theoretical guarantee when the data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广宁县| 旌德县| 鄂托克前旗| 广德县| 扎囊县| 珲春市| 巴青县| 科尔| 奉新县| 徐州市| 明水县| 敖汉旗| 大名县| 石林| 潼关县| 大英县| 清丰县| 河北省| 大竹县| 项城市| 岢岚县| 剑河县| 平阴县| 祁连县| 肥东县| 开远市| 宁阳县| 黄龙县| 开化县| 双峰县| 阳春市| 徐汇区| 都匀市| 武定县| 瓮安县| 建水县| 北海市| 黄梅县| 韩城市| 合江县| 甘洛县|