找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Toon Calders,Floriana Esposito,Rosa Meo Conference proceedings

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 21:23:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:10:54 | 只看該作者
33#
發(fā)表于 2025-3-27 05:50:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:50:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:58 | 只看該作者
Conference proceedings 2014ers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.
36#
發(fā)表于 2025-3-27 21:51:20 | 只看該作者
0302-9743 edge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers c
37#
發(fā)表于 2025-3-28 01:19:04 | 只看該作者
38#
發(fā)表于 2025-3-28 05:45:21 | 只看該作者
0302-9743 over the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.978-3-662-44850-2978-3-662-44851-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
39#
發(fā)表于 2025-3-28 10:13:25 | 只看該作者
Conference proceedings 2014very in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the l
40#
發(fā)表于 2025-3-28 11:23:27 | 只看該作者
Robust Distributed Training of Linear Classifiers Based on Divergence Minimization Principled. The goal of this distributed training is to utilize the data of all shards to obtain a well-performing linear classifier. The iterative parameter mixture (IPM) framework (Mann et al., 2009) is a state-of-the-art distributed learning framework that has a strong theoretical guarantee when the data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高尔夫| 武胜县| 黄骅市| 拜城县| 富锦市| 太康县| 雅江县| 建昌县| 和龙市| 定州市| 霍山县| 阿克陶县| 灌南县| 明光市| 蒲江县| 息烽县| 肇庆市| 兴安县| 太原市| 林周县| 外汇| 达孜县| 额尔古纳市| 南部县| 武威市| 象山县| 内江市| 屯留县| 庆元县| 达拉特旗| 龙海市| 门头沟区| 屯门区| 阜新| 胶南市| 犍为县| 清水县| 安陆市| 库车县| 广元市| 介休市|