找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Peter A. Flach,Tijl Bie,Nello Cristianini Conference proceeding

[復(fù)制鏈接]
樓主: SCOWL
51#
發(fā)表于 2025-3-30 11:10:56 | 只看該作者
52#
發(fā)表于 2025-3-30 15:51:54 | 只看該作者
53#
發(fā)表于 2025-3-30 17:17:48 | 只看該作者
54#
發(fā)表于 2025-3-31 00:20:41 | 只看該作者
Analyzing Text and Social Network Data with Probabilistic Modelsnce, history, medicine, and more. This talk will present an overview of recent work using probabilistic latent variable models to analyze such data. Latent variable models have a long tradition in data analysis and typically hypothesize the existence of simple unobserved phenomena to explain relativ
55#
發(fā)表于 2025-3-31 03:03:16 | 只看該作者
Discovering Descriptive Tile Trees are difficult to read, or return so many results interpretation becomes impossible. Here, we study a fully automated approach for mining easily interpretable models for binary data. We model data hierarchically with noisy tiles—rectangles with significantly different density than their parent tile.
56#
發(fā)表于 2025-3-31 08:53:08 | 只看該作者
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performanons. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI’s and AR’s are sufficient for most practical uses, and a number of recent works explored the a
57#
發(fā)表于 2025-3-31 11:29:06 | 只看該作者
Smoothing Categorical Data one wants to see the large scale structure, one should somehow subtract this smaller scale structure from the model..While for some kinds of model – such as boosted classifiers – it is easy to see the “important” components, for many kind of models this is far harder, if at all possible. In such ca
58#
發(fā)表于 2025-3-31 16:34:29 | 只看該作者
59#
發(fā)表于 2025-3-31 17:51:32 | 只看該作者
Bayesian Network Classifiers with Reduced Precision Parametersaph and a set of conditional probabilities associated with the nodes of the graph. These conditional probabilities are also referred to as parameters of the BNCs. According to common belief, these classifiers are insensitive to deviations of the conditional probabilities under certain conditions. Th
60#
發(fā)表于 2025-3-31 21:57:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沐川县| 德江县| 甘肃省| 桂阳县| 金沙县| 绥芬河市| 靖边县| 蚌埠市| 山东省| 青冈县| 湘西| 阜新| 城口县| 二连浩特市| 广德县| 偃师市| 社旗县| 彭州市| 象州县| 霸州市| 万全县| 康平县| 嘉峪关市| 平原县| 林州市| 汾西县| 达拉特旗| 衡山县| 萍乡市| 灵山县| 九台市| 鸡西市| 元氏县| 咸丰县| 皮山县| 关岭| 特克斯县| 淮阳县| 扶沟县| 儋州市| 蕲春县|