找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Intelligent Communications; Third International Limin Meng,Yan Zhang Conference proceedings 2018 ICST Institute for C

[復(fù)制鏈接]
樓主: CAP
41#
發(fā)表于 2025-3-28 18:29:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:41:48 | 只看該作者
43#
發(fā)表于 2025-3-29 01:59:52 | 只看該作者
44#
發(fā)表于 2025-3-29 06:39:36 | 只看該作者
Real-Time Drone Detection Using Deep Learning Approachs in real time. In this paper, we design a real-time drone detector using deep learning approach. Specifically, we improve a well-performed deep learning model, i.e., You Only Look Once, by modifying its structure and tuning its parameters to better accommodate drone detection. Considering that a ro
45#
發(fā)表于 2025-3-29 08:00:08 | 只看該作者
Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Mobile Edge Computinguire a satisfactory task offloading and resource allocation decision for each user so as to minimize energy consumption and delay. In this paper, we propose a deep reinforcement learning-based approach to solve joint task offloading and resource allocation problems. Simulation results show that the
46#
發(fā)表于 2025-3-29 13:46:33 | 只看該作者
RFID Data-Driven Vehicle Speed Prediction Using Adaptive Kalman Filter First of all, when the vehicle moves through a RFID tag, the reader needs to acquire the state information (i.e., current speed and time stamp) of the last vehicle across the tag, and meanwhile transmits its state information to this tag. Then, the state space model can be formulated according to t
47#
發(fā)表于 2025-3-29 19:35:22 | 只看該作者
Speed Prediction of High Speed Mobile Vehicle Based on Extended Kalman Filter in RFID Systemrs. To this end, through using RFID (Radio Frequency Identification) data, this paper proposes a vehicle speed prediction algorithm based on Extended Kalman Filter (EKF). Specifically, the proposed algorithm works as follows. First, the RFID reader equipped in the vehicle acquires the state informat
48#
發(fā)表于 2025-3-29 19:46:59 | 只看該作者
49#
發(fā)表于 2025-3-30 01:00:53 | 只看該作者
50#
發(fā)表于 2025-3-30 06:09:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开平市| 芮城县| 泰宁县| 玉龙| 公主岭市| 江都市| 客服| 政和县| 朝阳县| 德惠市| 襄垣县| 北碚区| 定陶县| 泸定县| 弋阳县| 麦盖提县| 三门县| 桐梓县| 香港| 陈巴尔虎旗| 扎赉特旗| 乐至县| 工布江达县| 旺苍县| 江北区| 沾化县| 潮安县| 河源市| 高青县| 鞍山市| 天峻县| 祥云县| 邵东县| 满洲里市| 五河县| 罗江县| 永靖县| 定陶县| 青海省| 鞍山市| 武汉市|