找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:31:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:16:34 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620467.jpg
43#
發(fā)表于 2025-3-29 00:38:05 | 只看該作者
A Cost-Sensitive Based Approach for Improving Associative Classification on Imbalanced Datasetsta. SSCR combines statistically significant association rules with cost-sensitive learning to build an associative classifier. Experimental results show that SSCR achieves best performance in terms of true positive rate and recall on real-world imbalanced datasets, compared with CBA and C4.5.
44#
發(fā)表于 2025-3-29 03:52:43 | 只看該作者
A Novel Approach for Identifying Banded Patterns in Zero-One Data Using Column and Row Banding Scoreut the need to consider large numbers of permutations. This mechanism has been incorporated into the Banded Pattern Mining (BPM) algorithm proposed in this paper. The operation of BPM is fully discussed. A Complete evaluation of the BPM algorithm is also presented clearly indicating the advantages o
45#
發(fā)表于 2025-3-29 08:58:03 | 只看該作者
ACCD: Associative Classification over Concept-Drifting Data Streamsthm over data streams), AUEH (Accuracy updated ensemble with Hoeffding tree) and VFDT(Very Fast Decision Trees) on 4 real-world data stream datasets, ACCD exhibits the best performance in terms of accuracy.
46#
發(fā)表于 2025-3-29 14:23:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:36:35 | 只看該作者
Monitoring Distributed Data Streams through Node Clusteringempt to collect together similar data items, monitoring requires clusters with . vectors canceling each other as much as possible. In particular, sub–clusters of a good cluster do not have to be good. This novel type of clustering dictated by the problem at hand requires development of new algorithm
48#
發(fā)表于 2025-3-29 19:55:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:19:28 | 只看該作者
50#
發(fā)表于 2025-3-30 04:21:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 安岳县| 金坛市| 肥西县| 阿拉善左旗| 平定县| 武川县| 盱眙县| 绥化市| 林口县| 贵定县| 永丰县| 稻城县| 屏山县| 汝城县| 溆浦县| 鄱阳县| 休宁县| 比如县| 松原市| 新余市| 平塘县| 余庆县| 安国市| 崇义县| 嘉鱼县| 龙陵县| 信丰县| 湖州市| 余庆县| 嘉禾县| 泸州市| 隆昌县| 开远市| 陕西省| 廊坊市| 永嘉县| 安化县| 呼玛县| 开封市| 金乡县|