找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 5th International Co Petra Perner Conference proceedings 2007 Springer-Verlag Berl

[復制鏈接]
樓主: bile-acids
21#
發(fā)表于 2025-3-25 05:16:25 | 只看該作者
A Clustering Algorithm Based on Generalized Starsrforms previously defined methods and obtains a smaller number of clusters. Since the GStar algorithm is relatively simple to implement and is also efficient, we advocate its use for tasks that require clustering, such as information organization, browsing, topic tracking, and new topic detection.
22#
發(fā)表于 2025-3-25 09:45:57 | 只看該作者
23#
發(fā)表于 2025-3-25 15:09:09 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:58 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:36 | 只看該作者
26#
發(fā)表于 2025-3-26 00:18:44 | 只看該作者
An Empirical Comparison of Ideal and Empirical ROC-Based Reject Rulesn two different reject rules (the Chow’s and the ROC rule). In particular, the experiments show that the Chow’s rule is inappropriate when the estimates of the a posteriori probabilities are not reliable.
27#
發(fā)表于 2025-3-26 04:31:57 | 只看該作者
Outlier Detection with Kernel Density Functionseld a robust local density estimation. Outliers are then detected by comparing the local density of each point to the local density of its neighbors. Our experiments performed on several simulated data sets have demonstrated that the proposed approach can outperform two widely used outlier detection algorithms (LOF and LOCI).
28#
發(fā)表于 2025-3-26 12:01:00 | 只看該作者
Critical Scale for Unsupervised Cluster Discoverythat the detected cluster, represented as a mode of the PDF, can be validated by observing the lifetime of the mode in scale space. Statistical properties of the lifetime, however, are unclear. In this paper, we propose a concept of the ‘critical scale’ and explore perspectives on handling it for the cluster validation.
29#
發(fā)表于 2025-3-26 14:27:45 | 只看該作者
Minimum Information Loss Cluster Analysis for Categorical Data. For this reason we use the latent class model only to define a set of “elementary” classes by estimating a mixture of a large number components. We propose a hierarchical “bottom up” cluster analysis based on unifying the elementary latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion.
30#
發(fā)表于 2025-3-26 19:02:00 | 只看該作者
On Concentration of Discrete Distributions with Applications to Supervised Learning of Classifiersby showing explicitly that, depending on context, independent (’Na?ve’) classifiers can be as bad as tossing coins. Regardless of this, independence may beat the generating model in learning supervised classification and we explicitly provide one such scenario.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-25 21:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
托克逊县| 什邡市| 探索| 榆树市| 车致| 九龙坡区| 钟祥市| 朔州市| 江北区| 乐业县| 根河市| 宜城市| 南江县| 托克逊县| 仁布县| 双辽市| 溧水县| 大荔县| 双辽市| 青神县| 宜宾市| 闽清县| 霸州市| 阳东县| 麦盖提县| 永嘉县| 浠水县| 萨嘎县| 南皮县| 丹江口市| 惠水县| 信阳市| 裕民县| 黄浦区| 金华市| 印江| 肥西县| 鹿邑县| 宣汉县| 兴仁县| 天祝|