找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 7th International Co Petra Perner Conference proceedings 2011 Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: 懇求
41#
發(fā)表于 2025-3-28 17:11:19 | 只看該作者
Granular Instances Selection for Fuzzy Modelinge largely studied especially in the classification problem. However, little work has been done to implement instances selection in fuzzy modeling application. In this paper, we present a framework for fuzzy modeling using the granular instances selection. This method is based on the information gran
42#
發(fā)表于 2025-3-28 19:56:45 | 只看該作者
Parameter-Free Anomaly Detection for Categorical Dataions of expected behaviors. It is a major issue of data mining for discovering novel or rare events, actions and phenomena. We investigate outlier detection from a . data set. The problem is especially challenging because of difficulty in defining a meaningful similarity measure for categorical data
43#
發(fā)表于 2025-3-29 00:57:58 | 只看該作者
Fuzzy Semi-supervised Support Vector Machinesining set to learn accurate classifiers. For this, it uses both labelled and unlabelled data for training. It also modulates the effect of the unlabelled data in the learning process. Empirical evaluations showed that by additionally using unlabelled data, FSS-SVM requires less labelled training dat
44#
發(fā)表于 2025-3-29 05:04:21 | 只看該作者
45#
發(fā)表于 2025-3-29 08:39:21 | 只看該作者
46#
發(fā)表于 2025-3-29 12:24:36 | 只看該作者
47#
發(fā)表于 2025-3-29 18:25:08 | 只看該作者
48#
發(fā)表于 2025-3-29 21:17:21 | 只看該作者
49#
發(fā)表于 2025-3-30 01:37:15 | 只看該作者
Investigation in Transfer Learning: Better Way to Apply Transfer Learning between Agentsthm and combines Case-Based Reasoning (CBR) and Heuristically Accelerated Reinforcement Learning (HARL) techniques..The experiments were made comparing differents approaches of Transfer Learning were actions learned in the acrobot problem can be used to speed up the learning of the policies of stabi
50#
發(fā)表于 2025-3-30 04:09:30 | 只看該作者
Exploration Strategies for Learned Probabilities in Smart Terrainlities that different types of objects meet needs, based on objects it has previously explored. This requires a rational strategy for determining which objects to explore next based on distances to objects, prevalence of similar objects, and amount of information the agent expects to gain. We define
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 01:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 呼和浩特市| 肥东县| 蒲城县| 长阳| 修水县| 察隅县| 海城市| 唐河县| 平顶山市| 镇平县| 永新县| 漯河市| 马山县| 高州市| 天津市| 屏东县| 鸡泽县| 苏尼特左旗| 兴国县| 武清区| 湟中县| 富宁县| 屏边| 奇台县| 梁河县| 中江县| 丹巴县| 乐东| 顺义区| 霍城县| 友谊县| 仪陇县| 阳信县| 抚州市| 竹溪县| 万州区| 天祝| 乌兰县| 元朗区| 江源县|