找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 13th International C Petra Perner Conference proceedings 2017 Springer Internation

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 21:33:47 | 只看該作者
Qualitative and Descriptive Topic Extraction from Movie Reviews Using LDA,ion from text reviews using Latent Dirichlet Allocation (LDA) based topic models. Our models extract distinct qualitative and descriptive topics by combining text reviews and movie ratings in a joint probabilistic model. We evaluate our models on an IMDB dataset and illustrate its performance through comparison of topics.
32#
發(fā)表于 2025-3-27 01:38:14 | 只看該作者
33#
發(fā)表于 2025-3-27 07:48:34 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:14 | 只看該作者
0302-9743 ing to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining..978-3-319-62415-0978-3-319-62416-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
35#
發(fā)表于 2025-3-27 17:40:31 | 只看該作者
0302-9743 Data Mining in Pattern Recognition, MLDM 2017, held in New York, NY, USA in July/August 2017.The 31 full papers presented in this book were carefully reviewed and selected from 150 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern min
36#
發(fā)表于 2025-3-27 20:30:19 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:36 | 只看該作者
Machine Learning-as-a-Service and Its Application to Medical Informatics,ontribution, we provide a comparison of several state-of-the-art Machine Learning-as-a-Service platforms along with their capabilities in medical informatics. In addition, we performed several analyses to examine the qualitative and quantitative attributes of two Machine Learning-as-a-Service environments namely “BigML” and “Algorithmia”.
38#
發(fā)表于 2025-3-28 04:22:25 | 只看該作者
Prediction of Insurance Claim Severity Loss Using Regression Models, the final loss value was also predicted with an error of 0.440 using FFNN regression model. We also demonstrate the use of lasso regularization to avoid over-fitting for some of the regression models.
39#
發(fā)表于 2025-3-28 10:19:38 | 只看該作者
40#
發(fā)表于 2025-3-28 12:07:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
习水县| 龙岩市| 建阳市| 晋城| 孟连| 方山县| 桐柏县| 图木舒克市| 南靖县| 永年县| 柳河县| 高邑县| 华蓥市| 弥勒县| 蚌埠市| 东宁县| 永仁县| 林芝县| 凤山市| 水城县| 长汀县| 舒兰市| 绥芬河市| 镇赉县| 宕昌县| 上林县| 襄汾县| 湘西| 横峰县| 顺平县| 威信县| 元氏县| 平阳县| 抚宁县| 平陆县| 岳阳县| 太康县| 建平县| 收藏| 峨眉山市| 寿阳县|