找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining Approaches to Climate Science; Proceedings of the 4 Valliappa Lakshmanan,Eric Gilleland,Martin Tingley Con

[復制鏈接]
查看: 18925|回復: 56
樓主
發(fā)表于 2025-3-21 17:02:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Data Mining Approaches to Climate Science
副標題Proceedings of the 4
編輯Valliappa Lakshmanan,Eric Gilleland,Martin Tingley
視頻videohttp://file.papertrans.cn/621/620445/620445.mp4
概述State of the art application in a new and rapidly expanding field.Includes review articles by acknowledged experts.Presents novel research in climate informatics
圖書封面Titlebook: Machine Learning and Data Mining Approaches to Climate Science; Proceedings of the 4 Valliappa Lakshmanan,Eric Gilleland,Martin Tingley Con
描述.This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014..
出版日期Conference proceedings 2015
關鍵詞Climate Extremes; Climate Informatics; Climate Prediction; Data Mining; Pattern Recognition for Climate;
版次1
doihttps://doi.org/10.1007/978-3-319-17220-0
isbn_softcover978-3-319-36558-9
isbn_ebook978-3-319-17220-0
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Machine Learning and Data Mining Approaches to Climate Science影響因子(影響力)




書目名稱Machine Learning and Data Mining Approaches to Climate Science影響因子(影響力)學科排名




書目名稱Machine Learning and Data Mining Approaches to Climate Science網絡公開度




書目名稱Machine Learning and Data Mining Approaches to Climate Science網絡公開度學科排名




書目名稱Machine Learning and Data Mining Approaches to Climate Science被引頻次




書目名稱Machine Learning and Data Mining Approaches to Climate Science被引頻次學科排名




書目名稱Machine Learning and Data Mining Approaches to Climate Science年度引用




書目名稱Machine Learning and Data Mining Approaches to Climate Science年度引用學科排名




書目名稱Machine Learning and Data Mining Approaches to Climate Science讀者反饋




書目名稱Machine Learning and Data Mining Approaches to Climate Science讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:25:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:41 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:00 | 只看該作者
http://image.papertrans.cn/m/image/620445.jpg
5#
發(fā)表于 2025-3-22 11:19:12 | 只看該作者
Multilevel Random Slope Approach and Nonparametric Inference for River Temperature, Under Haphazard mates. We address these concerns using multilevel random slope models and nonparametric bootstrap inference for assessing the statistical significance of the annual trend in river temperature when measurement times and dates are haphazard.
6#
發(fā)表于 2025-3-22 14:43:08 | 只看該作者
Teleconnections in Climate Networks: A Network-of-Networks Approach to Investigate the Influence of d as two separate climate networks, and teleconnections within the individual climate networks are studied with special focus on dipolar patterns. Our analysis reveals a pronounced rainfall dipole between Southeast Asia and the Afghanistan-Pakistan region, and we discuss the influences of Pacific SST anomalies on this dipole.
7#
發(fā)表于 2025-3-22 19:33:42 | 只看該作者
8#
發(fā)表于 2025-3-22 23:28:14 | 只看該作者
Predicting Crop Yield via Partial Linear Model with Bootstrapence of orthonormal basis functions of the appropriate function space. We use different bootstrap schemes to produce prediction bounds and error estimates for the model, since the noise terms appear to be heteroscedastic and non-normal in the data. Results are presented and caveats and extensions to the model are also discussed.
9#
發(fā)表于 2025-3-23 04:05:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:37:44 | 只看該作者
Evaluation of Global Climate Models Based on Global Impacts of ENSOsed this criteria to evaluate the Coupled Model Intercomparison Project (CMIP5) GCMs. We found that the global impact of ENSO in CNRM-CM5, GFDL-CM3, and CESM-FASTCHEM is highly similar to that of observations.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 12:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
松溪县| 梁河县| 大洼县| 贡觉县| 云林县| 昂仁县| 涿州市| 监利县| 古浪县| 辽宁省| 淄博市| 广东省| 柘城县| 赤水市| 黔南| 北宁市| 普陀区| 巨鹿县| 玉龙| 施甸县| 黄龙县| 乐至县| 泉州市| 抚松县| 清水县| 宝丰县| 隆德县| 井研县| 日照市| 克山县| 精河县| 三台县| 航空| 漳浦县| 金寨县| 新宁县| 古交市| 延寿县| 武汉市| 青州市| 邓州市|