找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th

[復(fù)制鏈接]
查看: 19064|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:25:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
編輯Aboul Ella Hassanien,Ashraf Darwish
視頻videohttp://file.papertrans.cn/621/620440/620440.mp4
概述Presents recent research in Machine Learning and Big Data Analytics.Provides an Analysis, Applications, and Challenges of Big Data and Machine Learning.Exhibits various technologies to create systems
叢書(shū)名稱Studies in Big Data
圖書(shū)封面Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges;  Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th
描述.This book is intended to present the state of the art in research on machine learning and big data analytics.?The accepted chapters?covered many themes including? artificial intelligence and data mining applications,?machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications. .
出版日期Book 2021
關(guān)鍵詞Machine Learning and Data Mining Applications; Deep Learning Techniques and applications; Deep Learnin
版次1
doihttps://doi.org/10.1007/978-3-030-59338-4
isbn_softcover978-3-030-59340-7
isbn_ebook978-3-030-59338-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影響因子(影響力)




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引頻次




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引頻次學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges讀者反饋




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:43:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:00 | 只看該作者
Convolutional Neural Network with Batch Normalization for Classification of Endoscopic Gastrointestionvolutional neural network (CNN) with batch normalization (BN) and an exponential linear unit (ELU) as the activation function. The proposed approach consists of eight layers (six convolutional and two fully connected layers) and is used to identify eight types of GI diseases in version two of the
5#
發(fā)表于 2025-3-22 12:10:09 | 只看該作者
6#
發(fā)表于 2025-3-22 14:55:40 | 只看該作者
Bio-inspired Machine Learning Mechanism for Detecting Malicious URL Through Passive DNS in Big Data tial or full system control to the attackers. To overcome these issues, researchers have applied machine learning techniques for malicious URL detection. However, these techniques fall to identify distinguishable generic features that are able to define the maliciousness of a given domain. Generally
7#
發(fā)表于 2025-3-22 18:03:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:35:10 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:18 | 只看該作者
Literature Review with Study and Analysis of the Quality Challenges of Recommendation Techniques andes have shown the demand for the recommender systems and their growing place in our lives. More steps deeper, we noticed that the severity of the quality and accuracy of these recommendation systems is very high to match users with same interests. For that reason and for being in competitive positio
10#
發(fā)表于 2025-3-23 08:15:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳原县| 平原县| 乳山市| 宣汉县| 襄汾县| 镇平县| 喜德县| 吕梁市| 澄江县| 桐梓县| 会东县| 大田县| 庆云县| 广宗县| 临湘市| 酉阳| 石柱| 明溪县| 凤翔县| 西峡县| 白水县| 界首市| 千阳县| 林西县| 民权县| 黎平县| 朝阳区| 南安市| 华安县| 济源市| 攀枝花市| 织金县| 区。| 汉沽区| 尼玛县| 南澳县| 龙海市| 曲周县| 九龙坡区| 宜宾县| 衡南县|