找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Artificial Intelligence; Ameet V Joshi Book 20201st edition Springer Nature Switzerland AG 2020 Artificial Intelligen

[復(fù)制鏈接]
樓主: 天真無邪
31#
發(fā)表于 2025-3-26 21:09:00 | 只看該作者
Support Vector Machinesalternative to neural networks, when neural networks were not performing up to the grand expectations that they came with. SVM proposed a very targeted mathematical approach towards finding the optimal solution in case of classification or regression. We will first study the original SVM theory that
32#
發(fā)表于 2025-3-27 03:53:56 | 只看該作者
Probabilistic Models discriminative and generative models. In the discriminative models we will study the concepts of Bayesian approach and Maximum likelihood approach. We will derive the solution of a same problem using both approaches to illustrate the differences and advantages and disadvantages. Then we will study
33#
發(fā)表于 2025-3-27 05:39:51 | 只看該作者
Dynamic Programming and Reinforcement Learningr dive deep into its generalization. We will understand the class of problems that can be solved with the framework of dynamic programming. Then we will study reinforcement learning as one subcategory of dynamic programming in detail. We will study the concepts of exploration and exploitation and th
34#
發(fā)表于 2025-3-27 12:24:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:29:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:12 | 只看該作者
Deep Learninge become extremely popular tools in modern machine learning due to tremendous success they have achieved using the distributed and parallel computing technology available at disposal. We will study two specific types of deep networks in the form of convolutional neural networks (CNN) and recurrent n
37#
發(fā)表于 2025-3-27 22:42:07 | 只看該作者
Emerging Trends in Machine Learningto the existing techniques, while some of them may seem outright crazy and futuristic. Most of the techniques discussed here are in their infancy and need significant research efforts to mature. However, each one of these techniques represents an area of active research. Any of these techniques, if
38#
發(fā)表于 2025-3-28 05:12:50 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:30:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 23:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大英县| 精河县| 滁州市| 英山县| 民权县| 永福县| 厦门市| 麦盖提县| 上杭县| 承德市| 资中县| 庄浪县| 柯坪县| 禹城市| 彰化市| 宝坻区| 宁津县| 大埔县| 中江县| 伊吾县| 峨边| 北川| 申扎县| 突泉县| 长海县| 湖口县| 夏邑县| 蚌埠市| 五大连池市| 宣恩县| 名山县| 儋州市| 苏州市| 和平区| 新竹市| 南漳县| 宜兰市| 三门峡市| 七台河市| 循化| 嘉善县|