找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Using R; Karthik Ramasubramanian,Abhishek Singh Book 20171st edition Karthik Ramasubramanian and Abhishek Singh 2017 Mach

[復制鏈接]
查看: 31772|回復: 42
樓主
發(fā)表于 2025-3-21 16:46:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Using R
編輯Karthik Ramasubramanian,Abhishek Singh
視頻videohttp://file.papertrans.cn/621/620429/620429.mp4
概述A comprehensive guide for anybody who wants to understand ML model building process end to end.Also covers scalable machine learning.Practical demonstration of concepts in R
圖書封面Titlebook: Machine Learning Using R;  Karthik Ramasubramanian,Abhishek Singh Book 20171st edition Karthik Ramasubramanian and Abhishek Singh 2017 Mach
描述.Examine the latest technological advancements in building a scalable machine learning model with Big Data using R. This book shows you how to work with a machine learning algorithm and use it to build a ML model from raw data...All practical demonstrations will be explored in R, a powerful programming language and software environment for statistical computing and graphics. The various packages and methods available in R will be used to explain the topics. For every machine learning algorithm covered in this book, a 3-D approach of theory, case-study and practice will be given. And where appropriate, the mathematics will be explained through visualization in R. All the images are available in color and hi-res as part of the code download...This new paradigm of teaching machine learning will bring about a radical change in perception for many of those who think this subject is difficult to learn. Though theory sometimes looks difficult, especially when there is heavy mathematics involved, the seamless flow from the theoretical aspects to example-driven learning provided in?this book?makes it easy for someone to connect the dots...What You‘ll Learn?.Use the model building process fl
出版日期Book 20171st edition
關鍵詞Machine Learning; Data Exploration; Sampling Techniques; Data Visualization; Feature Engineering; Machine
版次1
doihttps://doi.org/10.1007/978-1-4842-2334-5
isbn_ebook978-1-4842-2334-5
copyrightKarthik Ramasubramanian and Abhishek Singh 2017
The information of publication is updating

書目名稱Machine Learning Using R影響因子(影響力)




書目名稱Machine Learning Using R影響因子(影響力)學科排名




書目名稱Machine Learning Using R網(wǎng)絡公開度




書目名稱Machine Learning Using R網(wǎng)絡公開度學科排名




書目名稱Machine Learning Using R被引頻次




書目名稱Machine Learning Using R被引頻次學科排名




書目名稱Machine Learning Using R年度引用




書目名稱Machine Learning Using R年度引用學科排名




書目名稱Machine Learning Using R讀者反饋




書目名稱Machine Learning Using R讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:06:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:15 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:32 | 只看該作者
Book 20171st editionto learn. Though theory sometimes looks difficult, especially when there is heavy mathematics involved, the seamless flow from the theoretical aspects to example-driven learning provided in?this book?makes it easy for someone to connect the dots...What You‘ll Learn?.Use the model building process fl
6#
發(fā)表于 2025-3-22 14:00:46 | 只看該作者
7#
發(fā)表于 2025-3-22 20:43:57 | 只看該作者
8#
發(fā)表于 2025-3-22 23:03:30 | 只看該作者
9#
發(fā)表于 2025-3-23 01:34:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:01:53 | 只看該作者
Feature Engineering,n easy-to-use guide of key terms and methodology used in feature engineering. The chapter will give due weight to the domain knowledge and some common business limitations while using machine learning algorithms to solve business problems.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
奎屯市| 合川市| 敦化市| 济宁市| 陈巴尔虎旗| 沿河| 九江市| 防城港市| 区。| 卢氏县| 保康县| 九江县| 抚顺市| 巴彦淖尔市| 白城市| 丹东市| 馆陶县| 炉霍县| 东安县| 莒南县| 东海县| 梓潼县| 镇赉县| 汶上县| 鹤山市| 大化| 固镇县| 旅游| 日土县| 无锡市| 永善县| 河北省| 罗田县| 资阳市| 鄂托克旗| 太和县| 利津县| 寿宁县| 安吉县| 郓城县| 华安县|