找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Techniques for Multimedia; Case Studies on Orga Matthieu Cord,Pádraig Cunningham Book 2008 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 9561|回復(fù): 42
樓主
發(fā)表于 2025-3-21 20:06:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Techniques for Multimedia
副標題Case Studies on Orga
編輯Matthieu Cord,Pádraig Cunningham
視頻videohttp://file.papertrans.cn/621/620425/620425.mp4
概述Includes supplementary material:
叢書名稱Cognitive Technologies
圖書封面Titlebook: Machine Learning Techniques for Multimedia; Case Studies on Orga Matthieu Cord,Pádraig Cunningham Book 2008 Springer-Verlag Berlin Heidelbe
描述.Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Applying machine learning techniques to multimedia content involves special considerations – the data is typically of very high dimension, and the normal distinction between supervised and unsupervised techniques does not always apply. ..This book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain. Arising from the EU MUSCLE network, a program that drew together multidisciplinary teams with expertise in machine learning, pattern recognition, artificial intelligence, and image, video, text and crossmedia processing, the book first introduces the machine learning principles and techniques that are applied in multimedia data processing and analysis. The second part focuses on multimedia data processing applications, with chapters examining specific machine learning issues in domains such as image retrieval, biometrics, semantic l
出版日期Book 2008
關(guān)鍵詞Dimensionsreduktion; biometrics; classification; clustering; cognition; database; decision theory; learning
版次1
doihttps://doi.org/10.1007/978-3-540-75171-7
isbn_softcover978-3-642-44362-6
isbn_ebook978-3-540-75171-7Series ISSN 1611-2482 Series E-ISSN 2197-6635
issn_series 1611-2482
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Machine Learning Techniques for Multimedia影響因子(影響力)




書目名稱Machine Learning Techniques for Multimedia影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Techniques for Multimedia網(wǎng)絡(luò)公開度




書目名稱Machine Learning Techniques for Multimedia網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Techniques for Multimedia被引頻次




書目名稱Machine Learning Techniques for Multimedia被引頻次學(xué)科排名




書目名稱Machine Learning Techniques for Multimedia年度引用




書目名稱Machine Learning Techniques for Multimedia年度引用學(xué)科排名




書目名稱Machine Learning Techniques for Multimedia讀者反饋




書目名稱Machine Learning Techniques for Multimedia讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:43 | 只看該作者
Supervised Learningprocessing of multimedia content. The defining characteristic of supervised learning is the availability of annotated training data. The name invokes the idea of a ‘supervisor’ that instructs the learning system on the labels to associate with training examples. Typically these labels are class labe
板凳
發(fā)表于 2025-3-22 01:12:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:45 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:25 | 只看該作者
Online Content-Based Image Retrieval Using Active Learning, many difficulties arise. Learning is definitively considered as a very interesting issue to boost the efficiency of information retrieval systems. Different strategies, such as offline supervised learning or semi-supervised learning, have been proposed. Active learning methods have been considered
6#
發(fā)表于 2025-3-22 13:39:23 | 只看該作者
Conservative Learning for Object Detectorsing a classifier and to combine the power of a discriminative classifier with the robustness of a generative model. Starting with motion detection an initial set of positive examples is obtained by analyzing the geometry (aspect ratio) of the motion blobs. Using these samples a discriminative classi
7#
發(fā)表于 2025-3-22 20:27:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:38 | 只看該作者
Mental Search in Image Databases: Implicit Versus Explicit Content Queryexample at hand to start the search. In this chapter, we review different methods that implement this paradigm, originating from both the content-based image retrieval and the object recognition fields. In particular, we present two complementary methods. The first one allows the user to reach the t
9#
發(fā)表于 2025-3-23 05:06:25 | 只看該作者
Combining Textual and Visual Information for Semantic Labeling of Images and Videos human effort required for manual labeling used in a supervised setting. Recently, semi-supervised techniques which make use of annotated image and video collections are proposed as an alternative to reduce the human effort. In this direction, different techniques, which are mostly adapted from info
10#
發(fā)表于 2025-3-23 06:16:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高州市| 霸州市| 泾川县| 额济纳旗| 城步| 西昌市| 仙游县| 林甸县| 泰安市| 德庆县| 德兴市| 阜南县| 长沙县| 金坛市| 五河县| 湘潭县| 绥宁县| 邮箱| 廊坊市| 大渡口区| 唐山市| 阿坝| 边坝县| 石柱| 蕉岭县| 中牟县| 荥经县| 诸暨市| 河东区| 青海省| 普格县| 买车| 汉川市| 会宁县| 阿荣旗| 朝阳市| 三台县| 临江市| 舒兰市| 嵊州市| 汨罗市|