找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Techniques for Gait Biometric Recognition; Using the Ground Rea James Eric Mason,Issa Traoré,Isaac Woungang Book 2016 Spri

[復(fù)制鏈接]
查看: 24628|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:31:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Techniques for Gait Biometric Recognition
副標(biāo)題Using the Ground Rea
編輯James Eric Mason,Issa Traoré,Isaac Woungang
視頻videohttp://file.papertrans.cn/621/620424/620424.mp4
概述Introduces novel machine-learning-based temporal normalization techniques.Bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition.Provides d
圖書封面Titlebook: Machine Learning Techniques for Gait Biometric Recognition; Using the Ground Rea James Eric Mason,Issa Traoré,Isaac Woungang Book 2016 Spri
描述This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF..This book.·?????????introduces novel machine-learning-based temporal normalization techniques.·?????????bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition.·?????????provides detailed discussions of key research challenges and open research issues i
出版日期Book 2016
關(guān)鍵詞Behavioral biometrics; Biometrics Recognition framework; Footstep GRF-based person recognition; GRF Rec
版次1
doihttps://doi.org/10.1007/978-3-319-29088-1
isbn_softcover978-3-319-80486-6
isbn_ebook978-3-319-29088-1
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Machine Learning Techniques for Gait Biometric Recognition影響因子(影響力)




書目名稱Machine Learning Techniques for Gait Biometric Recognition影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Techniques for Gait Biometric Recognition網(wǎng)絡(luò)公開度




書目名稱Machine Learning Techniques for Gait Biometric Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Techniques for Gait Biometric Recognition被引頻次




書目名稱Machine Learning Techniques for Gait Biometric Recognition被引頻次學(xué)科排名




書目名稱Machine Learning Techniques for Gait Biometric Recognition年度引用




書目名稱Machine Learning Techniques for Gait Biometric Recognition年度引用學(xué)科排名




書目名稱Machine Learning Techniques for Gait Biometric Recognition讀者反饋




書目名稱Machine Learning Techniques for Gait Biometric Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:51 | 只看該作者
Normalization,y, feature extraction techniques may identify the discriminant features not affected by such variability. However, when it is possible to identify these sources of variability, it may also be possible to use . to expose the important features that would otherwise be hidden due to differences in the conditions at the time of sample collection.
板凳
發(fā)表于 2025-3-22 01:53:37 | 只看該作者
Applications of Gait Biometrics,lications in industry. Nevertheless, gait biometric recognition continues to be a growing area of interest due to its unobtrusive nature and an increasing number of technologies available for capturing information about the human gait. In this chapter, we explore a variety of . for which gait biometrics may be deployed.
地板
發(fā)表于 2025-3-22 08:37:01 | 只看該作者
https://doi.org/10.1007/978-3-319-29088-1Behavioral biometrics; Biometrics Recognition framework; Footstep GRF-based person recognition; GRF Rec
5#
發(fā)表于 2025-3-22 12:23:47 | 只看該作者
James Eric Mason,Issa Traoré,Isaac WoungangIntroduces novel machine-learning-based temporal normalization techniques.Bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition.Provides d
6#
發(fā)表于 2025-3-22 14:27:21 | 只看該作者
7#
發(fā)表于 2025-3-22 17:32:56 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:36 | 只看該作者
ng speed on footstep GRF-based person recognition.Provides dThis book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Reco
9#
發(fā)表于 2025-3-23 02:21:58 | 只看該作者
Experimental Analysis,nd, finally, we explore ways in which we may be able to . upon the results discovered. It is hoped that this work will contribute to the present day understanding of GRF recognition and address some of the technical issues facing the deployment of such a system in a real-world setting.
10#
發(fā)表于 2025-3-23 09:30:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 泗阳县| 银川市| 乌兰察布市| 利津县| 四平市| 武城县| 武山县| 巫山县| 灌阳县| 仁布县| 柯坪县| 富裕县| 东丰县| 建水县| 台前县| 曲阳县| 酒泉市| 珠海市| 文成县| 莎车县| 新昌县| 永宁县| 崇明县| 乌什县| 黎城县| 揭东县| 邮箱| 蕲春县| 凤城市| 岳阳市| 专栏| 吉水县| 德庆县| 定结县| 平陆县| 曲周县| 延吉市| 江油市| 沙坪坝区| 大关县|