找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Paradigms; Advances in Learning Maria Virvou,Efthimios Alepis,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 35336|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:11:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning Paradigms
副標(biāo)題Advances in Learning
編輯Maria Virvou,Efthimios Alepis,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/621/620416/620416.mp4
概述Presents recent machine learning paradigms and advances in learning analytics.Provides concise coverage from the vantage point of a newcomer, but will also appeal to experts/researchers in learning an
叢書(shū)名稱Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Machine Learning Paradigms; Advances in Learning Maria Virvou,Efthimios Alepis,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020
描述.This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including:.? Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation;.? Using learning analytics to predict student performance;.? Using learning analytics to create learning materials and educational courses; and.? Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning.. .The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest..
出版日期Book 2020
關(guān)鍵詞Learning Analytics; Mobile Learning; Educational Tools; Social Network Learning; Big Learning Data; Analy
版次1
doihttps://doi.org/10.1007/978-3-030-13743-4
isbn_ebook978-3-030-13743-4Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Machine Learning Paradigms影響因子(影響力)




書(shū)目名稱Machine Learning Paradigms影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning Paradigms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning Paradigms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning Paradigms被引頻次




書(shū)目名稱Machine Learning Paradigms被引頻次學(xué)科排名




書(shū)目名稱Machine Learning Paradigms年度引用




書(shū)目名稱Machine Learning Paradigms年度引用學(xué)科排名




書(shū)目名稱Machine Learning Paradigms讀者反饋




書(shū)目名稱Machine Learning Paradigms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:08 | 只看該作者
Jede Hauptgruppe basiert auf spezifischen Merkmalen. Im Falle einer ?nderung der Form wird der Stoffzusammenhalt beibehalten, vermindert oder vermehrt (vgl. Tab.?7.1). .Die in folgenden Abschnitten beschriebenen Fertigungsverfahren finden sich zum Beispiel in den Hauptgruppen.beziehungsweise.Andere
地板
發(fā)表于 2025-3-22 07:42:47 | 只看該作者
5#
發(fā)表于 2025-3-22 11:57:47 | 只看該作者
David Martín Santos Melgozan des konstruktiven Leichtbaus im Fahrzeug- und Maschinenbau. Dabei wurde besonderer Wert auf eine praxisorientierte Darstellung gelegt, um der Ingenieurausbildung an Hochschulen passgenau gerecht zu werden. Es führt methodisch in die Arbeitstechniken und konstruktiven Fragestellungen ein. Ziel des
6#
發(fā)表于 2025-3-22 16:27:19 | 只看該作者
Machine Learning Paradigms,ment of more engaging and human-like computer-based learning, personalization and incorporation of artificial intelligence techniques. A new research discipline, termed ., is emerging and examines the collection and intelligent analysis of learner and instructor data with the goal to extract informa
7#
發(fā)表于 2025-3-22 17:03:00 | 只看該作者
Using a Multi Module Model for Learning Analytics to Predict Learners’ Cognitive States and Provide m learning analytics in order to support the digital education. The way learning analytics is used, can vary. It can be used to provide learners with information to reflect on their achievements and patterns of behavior in relation to others, or to identify students requiring extra support and atten
8#
發(fā)表于 2025-3-22 21:51:58 | 只看該作者
Analytics for Student Engagement studies. This significantly elevates opportunities to better understand how students learn. The learning analytics community is exploring these data to describe learning processes [.] and ground recommendations for improved learning environments [., ., .]. One challenge in this work is need for mor
9#
發(fā)表于 2025-3-23 04:31:54 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:34 | 只看該作者
Learning Feedback Based on Dispositional Learning Analyticsd on self-report surveys, offers a very rich context for learning analytics applications. In previous research, we have demonstrated how such Dispositional Learning Analytics applications not only have great potential regarding predictive power, e.g. with the aim to promptly signal students at risk,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武山县| 图木舒克市| 皮山县| 正宁县| 海安县| 丘北县| 增城市| 兴仁县| 龙川县| 大埔县| 黎川县| 交口县| 阜城县| 西安市| 什邡市| 雷州市| 金山区| 黑河市| 略阳县| 安徽省| 札达县| 兰西县| 永善县| 虹口区| 梅州市| 黄平县| 合作市| 五河县| 大田县| 濮阳县| 合水县| 曲周县| 姜堰市| 江口县| 南投市| 昌平区| 丹东市| 望江县| 大港区| 札达县| 四会市|