找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Paradigms; Applications of Lear George A. Tsihrintzis,Maria Virvou,Lakhmi C. Jain Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-26 21:32:11 | 只看該作者
32#
發(fā)表于 2025-3-27 04:40:41 | 只看該作者
2662-3447 research on machine learning paradigms.Written by recognized.This book is the inaugural volume in the new Springer series on .Learning and Analytics in Intelligent Systems.. The series aims at providing, in hard-copy and soft-copy form, books on all aspects of learning, analytics, advanced intellige
33#
發(fā)表于 2025-3-27 05:50:11 | 只看該作者
Book 2019 the series will publish edited books, monographs, handbooks, textbooks and conference proceedings. This book is intended for professors, researchers, scientists, engineers and students. An extensive list of references at the end of each chapter allows readers to probe further into those application areas that interest them most. .
34#
發(fā)表于 2025-3-27 12:39:39 | 只看該作者
35#
發(fā)表于 2025-3-27 14:02:26 | 只看該作者
Automated Stock Price Motion Prediction Using Technical Analysis Datasets and Machine Learningattempt to generalize the model for all stocks would make our effort impossible. A use case with the famous US S&P 500 index has been also tested. We conclude with a discussion on the optimization of the accuracy of such systems.
36#
發(fā)表于 2025-3-27 20:10:38 | 只看該作者
37#
發(fā)表于 2025-3-27 23:09:24 | 只看該作者
A Comparison of Machine Learning Techniques to Predict the Risk of Heart Failurea comparison of the different techniques used to find the best performance. A conclusion of the best technique is also provided in this chapter. Some examples of the techniques are C4.5 tree, Na?ve Bayes, Bayesian Neural Networks (BNN), Support Vector Machine (SVM), Artificial Neural Network (ANN), Nearest Neighbor (KNN).
38#
發(fā)表于 2025-3-28 03:01:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:32:43 | 只看該作者
40#
發(fā)表于 2025-3-28 11:26:00 | 只看該作者
Differential Gene Expression Analysis of RNA-seq Data Using Machine Learning for Cancer Research the understanding of complex, multi-factorial and heterogeneous diseases such as cancer. Profiling of transcriptome is used for searching the genes that show differences in their expression level associated with a particular response. RNA-seq data allows researchers to study millions of short reads
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 泸州市| 苍山县| 红安县| 砀山县| 霸州市| 彰武县| 郎溪县| 铜陵市| 若尔盖县| 新平| 密山市| 沙雅县| 芦山县| 黎城县| 利辛县| 巫溪县| 临桂县| 宜兴市| 眉山市| 牟定县| 泸溪县| 友谊县| 株洲市| 南江县| 九江县| 开封县| 南丰县| 南康市| 达孜县| 烟台市| 论坛| 濮阳县| 镇赉县| 武强县| 玛曲县| 黄平县| 海丰县| 天津市| 阿拉善盟| 汝阳县|