找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Models and Algorithms for Big Data Classification; Thinking with Exampl Shan Suthaharan Book 2016 Springer Science+Busines

[復(fù)制鏈接]
樓主: 變成小松鼠
31#
發(fā)表于 2025-3-27 00:44:29 | 只看該作者
32#
發(fā)表于 2025-3-27 01:12:35 | 只看該作者
Deep Learning Modelsnd provide programming examples that help you clearly understand these approaches. These techniques heavily depend on the stochastic gradient descent approach; and this approach is also discussed in detail with simple iterative examples. These parametrized deep learning techniques are also dependent
33#
發(fā)表于 2025-3-27 07:38:14 | 只看該作者
Chandelier Decision Tree tree and the random forest. The chapter also presents a previously proposed algorithm called the unit circle algorithm (UCA) and proposes a family of UCA-based algorithms called the unit circle machine (UCM), unit ring algorithm (URA), and unit ring machine (URM). The unit circle algorithm integrat
34#
發(fā)表于 2025-3-27 12:50:10 | 只看該作者
Dimensionality Reductionis, that can support scaling-up machine learning. The standard and flagged feature hashing approaches are explained in detail. The feature hashing approach suffers from the hash collision problem, and this problem is reported and discussed in detail in this chapter, too. Two collision controllers, f
35#
發(fā)表于 2025-3-27 17:30:24 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:10 | 只看該作者
MapReduce Programming Platformprovide good programming practices to the users of the MapReduce programming platform in the context of big data processing and analysis. Several programming examples are also presented to help the reader to practice coding principles and better understand the MapReduce framework.
37#
發(fā)表于 2025-3-28 00:21:39 | 只看該作者
Random Forest Learning chapter include detailed discussions on these approaches. The chapter also discusses the training and testing algorithms that are suitable for the random forest supervised learning. The chapter also presents simple examples and visual aids to better understand the random forest supervised learning technique.
38#
發(fā)表于 2025-3-28 05:35:47 | 只看該作者
39#
發(fā)表于 2025-3-28 09:37:05 | 只看該作者
1571-0270 overcome Big Data classification problems that industries, .This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach)
40#
發(fā)表于 2025-3-28 13:07:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴塘县| 桐城市| 钟祥市| 墨竹工卡县| 扶风县| 阿尔山市| 滕州市| 祥云县| 六盘水市| 壤塘县| 汶上县| 上饶县| 南川市| 鹤山市| 安阳县| 平原县| 双鸭山市| 胶州市| 乌苏市| 长治市| 加查县| 吴忠市| 贵定县| 泗洪县| 礼泉县| 黄浦区| 淮滨县| 凤冈县| 旅游| 泰宁县| 镇远县| 龙游县| 远安县| 博湖县| 祁阳县| 西充县| 台北市| 古田县| 来宾市| 毕节市| 台北县|