找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Models and Algorithms for Big Data Classification; Thinking with Exampl Shan Suthaharan Book 2016 Springer Science+Busines

[復制鏈接]
查看: 30761|回復: 52
樓主
發(fā)表于 2025-3-21 18:12:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Models and Algorithms for Big Data Classification
副標題Thinking with Exampl
編輯Shan Suthaharan
視頻videohttp://file.papertrans.cn/621/620410/620410.mp4
概述Addresses a new and hot field of Big Data Science and Engineering.Offers new Machine Learning techniques and solutions.Provides solutions to overcome Big Data classification problems that industries,
叢書名稱Integrated Series in Information Systems
圖書封面Titlebook: Machine Learning Models and Algorithms for Big Data Classification; Thinking with Exampl Shan Suthaharan Book 2016 Springer Science+Busines
描述.This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. .The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this fie
出版日期Book 2016
關鍵詞Big Data; Classification; Data Visualization; Machine Learning; Supervised Learning; Unit Circle Machine
版次1
doihttps://doi.org/10.1007/978-1-4899-7641-3
isbn_softcover978-1-4899-7852-3
isbn_ebook978-1-4899-7641-3Series ISSN 1571-0270 Series E-ISSN 2197-7968
issn_series 1571-0270
copyrightSpringer Science+Business Media New York 2016
The information of publication is updating

書目名稱Machine Learning Models and Algorithms for Big Data Classification影響因子(影響力)




書目名稱Machine Learning Models and Algorithms for Big Data Classification影響因子(影響力)學科排名




書目名稱Machine Learning Models and Algorithms for Big Data Classification網(wǎng)絡公開度




書目名稱Machine Learning Models and Algorithms for Big Data Classification網(wǎng)絡公開度學科排名




書目名稱Machine Learning Models and Algorithms for Big Data Classification被引頻次




書目名稱Machine Learning Models and Algorithms for Big Data Classification被引頻次學科排名




書目名稱Machine Learning Models and Algorithms for Big Data Classification年度引用




書目名稱Machine Learning Models and Algorithms for Big Data Classification年度引用學科排名




書目名稱Machine Learning Models and Algorithms for Big Data Classification讀者反饋




書目名稱Machine Learning Models and Algorithms for Big Data Classification讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:46:37 | 只看該作者
Shan Suthaharanone can achieve by placing Leibniz‘s philosophy in the context of the sources for two of the most basic concerns of his philosophical career: his metaphysics of individuals and the principle oftheir individuation. In this book I provide for the first time a detailed examination of these two Leibnizi
板凳
發(fā)表于 2025-3-22 04:05:22 | 只看該作者
地板
發(fā)表于 2025-3-22 06:44:51 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:42 | 只看該作者
6#
發(fā)表于 2025-3-22 15:16:48 | 只看該作者
ticular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geomet
7#
發(fā)表于 2025-3-22 18:46:36 | 只看該作者
Shan Suthaharanally relevant. In Leibniz’ times, the text of Euclid’s Elements still represented the starting point for any advanced mathematical theory, including Leibniz’ most celebrated discovery, the Calculus. The Greek treatise, on the other hand, was also the main model for deductive reasoning, and the touch
8#
發(fā)表于 2025-3-22 23:06:07 | 只看該作者
Shan Suthaharanphie als streng beweisbare Fachwissenschaft sieht darin den auszumerzenden Erdenrest, der entweder blo?e individuelle Eigenheit oder zeitgebundenes Schicksal ist, nach dessen Abzug das Ewige und Wertvolle zurückbleibt. Gleichwohl werden wir uns damit abfinden müssen, da? Leibnizens Lehre nicht als G
9#
發(fā)表于 2025-3-23 05:03:01 | 只看該作者
10#
發(fā)表于 2025-3-23 08:15:51 | 只看該作者
Shan Suthaharan Hat doch auch Goethe die sch?pferische Kraft als ein D?monisches, in dem G?ttliches und Teuflisches zusammenwirken, gedeutet. Aber es ist nicht Aufgabe der Philosophie, unl?sbare Probleme zu entscheiden, sondern unsere Organe für die Erkenntnis des sch?pferischen und des zerst?renden Geschehens auf
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐陵市| 康平县| 苗栗市| 西和县| 黔江区| 商城县| 翁牛特旗| 离岛区| 宜黄县| 怀仁县| 平和县| 湟源县| 东港市| 桓台县| 邢台市| 丰宁| 东阿县| 青龙| 石台县| 黑山县| 长武县| 嘉义市| 五台县| 南投市| 左权县| 自治县| 荥阳市| 惠水县| 临西县| 杭州市| 亚东县| 大同市| 梅州市| 新建县| 文安县| 孙吴县| 平山县| 横山县| 美姑县| 新丰县| 巩义市|