找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Methods for Multi-Omics Data Integration; Abedalrhman Alkhateeb,Luis Rueda Book 2024 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 19108|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:52:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration
編輯Abedalrhman Alkhateeb,Luis Rueda
視頻videohttp://file.papertrans.cn/621/620406/620406.mp4
概述The book provides practical guidance on the implementation of machine learning methods.Its emphasis on reproducibility, transparency, and open databases and repositories facilitate replication.Special
圖書(shū)封面Titlebook: Machine Learning Methods for Multi-Omics Data Integration;  Abedalrhman Alkhateeb,Luis Rueda Book 2024 The Editor(s) (if applicable) and Th
描述.The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integratingthese large-scale heterogeneous data sets into one learning model. ..This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for v
出版日期Book 2024
關(guān)鍵詞Multi-omics data integration; machine learning; bioinformatics; bioinformatics; proteomics; cancer biomar
版次1
doihttps://doi.org/10.1007/978-3-031-36502-7
isbn_softcover978-3-031-36504-1
isbn_ebook978-3-031-36502-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration影響因子(影響力)




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration被引頻次




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration被引頻次學(xué)科排名




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration年度引用




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration年度引用學(xué)科排名




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration讀者反饋




書(shū)目名稱Machine Learning Methods for Multi-Omics Data Integration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:44 | 只看該作者
978-3-031-36504-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 08:16:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:12 | 只看該作者
Machine Learning from Multi-omics: Applications and Data Integration,we also discuss options for structures and data integration strategies that are applied today in Machine Learning and Deep Neural Network Learning to diagnose and treat diseases and discuss sample scholarly work that shows the efficacy of this approach.
6#
發(fā)表于 2025-3-22 13:24:05 | 只看該作者
en databases and repositories facilitate replication.Special.The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple
7#
發(fā)表于 2025-3-22 20:15:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:41 | 只看該作者
Machine Learning Approaches for Multi-omics Data Integration in Medicine,search for disease diagnosis, monitoring, and treatment options is how to integrate high-dimensional data from omics. This chapter focused on machine learning methods for multi-omics data integration.
9#
發(fā)表于 2025-3-23 04:38:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:33:50 | 只看該作者
Introduction to Multiomics Technology,ing researchers to gain a deeper understanding of its complexity and heterogeneity. The integration of multi-omics data can reveal novel biological pathways, biomarkers, and potential therapeutic targets. In this introduction to multiomics chapter, we will discuss several omics types and their commonly used techniques.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿光市| 延吉市| 通化市| 通州区| 康乐县| 邢台县| 巫溪县| 平山县| 汤阴县| 曲阳县| 临沭县| 威远县| 松桃| 庆云县| 大竹县| 乌什县| 青冈县| 雷州市| 中宁县| 丰台区| 通化市| 伊通| 大同市| 山阴县| 通州市| 安溪县| 佛冈县| 仪陇县| 双峰县| 饶平县| 青田县| 扬中市| 丹阳市| 环江| 大化| 富顺县| 大英县| 铁力市| 海伦市| 云龙县| 陇西县|