找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video; Olga Isupova Book 2018 Springer International Publishing A

[復(fù)制鏈接]
查看: 37907|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:03:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video
編輯Olga Isupova
視頻videohttp://file.papertrans.cn/621/620404/620404.mp4
概述Nominated by the University of Sheffield as an outstanding Ph.D. thesis.Proposes statistical hypothesis tests for both offline and online data processing and multiple change-point detection.Develops l
叢書(shū)名稱(chēng)Springer Theses
圖書(shū)封面Titlebook: Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video;  Olga Isupova Book 2018 Springer International Publishing A
描述.This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes..Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives..The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes anovel anomaly localisation procedure. .In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then deve
出版日期Book 2018
關(guān)鍵詞Machine Learning; Intelligent Vision Systems; Dynamic Type Models; Behaviour Analysis; Anomaly Detection
版次1
doihttps://doi.org/10.1007/978-3-319-75508-3
isbn_softcover978-3-030-09250-4
isbn_ebook978-3-319-75508-3Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video被引頻次




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video年度引用




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video讀者反饋




書(shū)目名稱(chēng)Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:03 | 只看該作者
Olga Isupovared to as the 4Es) and it can offer meaningful contributions to educational research and practice, including the re-evaluation of the role of the body in educational experiences. To discuss the reciprocal relevance of EC and phenomenological pedagogy, in this paper we start by shortly reviewing the
板凳
發(fā)表于 2025-3-22 01:36:14 | 只看該作者
Olga Isupovared to as the 4Es) and it can offer meaningful contributions to educational research and practice, including the re-evaluation of the role of the body in educational experiences. To discuss the reciprocal relevance of EC and phenomenological pedagogy, in this paper we start by shortly reviewing the
地板
發(fā)表于 2025-3-22 08:04:24 | 只看該作者
Olga Isupovaof neurocognitive research, turning the parental figure into a follower of expert driven neuroguidelines. Neuroparenting is illustrative hereof. Since neuroscientific knowledge has become integral to the ways in which people have come to think of and shape parenting, the question how the increasing
5#
發(fā)表于 2025-3-22 10:15:58 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:54 | 只看該作者
7#
發(fā)表于 2025-3-22 18:07:07 | 只看該作者
Olga Isupovaskussion des Forschungsstandes muss daher notgedrungen ein mehr oder weniger grober überblick über die wichtigsten Ans?tze sein. Was jedoch ein ?wichtiger‘ Ansatz ist, l?sst sich so einfach natürlich nicht sagen. In der folgenden Auseinandersetzung mit sozialwissenschaftlichen Identit?tstheorien wur
8#
發(fā)表于 2025-3-22 23:13:01 | 只看該作者
raumbezogenen Identit?tsforschung dominiert eine dualistische Sichtweise, die den K?rper vom Geist und den Menschen von seiner Umwelt trennt. Ortsbezogene, lokale und auch materielle Kontexte sowie die leiblichen, affektiven oder irrationalen Dimensionen unserer Erfahrungen werden au?er Acht gelass
9#
發(fā)表于 2025-3-23 04:01:31 | 只看該作者
Introduction,al processing and other areas for mining meaningful information from raw video data. The availability of cheap sensors and need for solving intelligent tasks facilitate the growth of interest in this area.
10#
發(fā)表于 2025-3-23 09:10:16 | 只看該作者
,Proposed Learning Algorithms for?Markov Clustering Topic Model,ent typical motion patterns in an observed scene. These patterns can be used for semantic understanding of the typical activities happening within the scene. They can also be used to detect abnormal events. Likelihood of newly observed data is employed as a measure of normality. If something atypica
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望奎县| 灌南县| 博罗县| 惠来县| 吴堡县| 汨罗市| 博客| 吴忠市| 南江县| 杂多县| 邵阳县| 吉隆县| 长寿区| 枝江市| 雅安市| 沙洋县| 驻马店市| 江西省| 海林市| 康平县| 怀安县| 疏附县| 水城县| 林口县| 兴义市| 阳泉市| 九寨沟县| 石泉县| 法库县| 响水县| 胶州市| 台南市| 邹城市| 霍林郭勒市| 南乐县| 米泉市| 阿克苏市| 太康县| 绵竹市| 南郑县| 克拉玛依市|