找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Methods; Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U

[復制鏈接]
查看: 10162|回復: 57
樓主
發(fā)表于 2025-3-21 16:19:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Methods
編輯Hang Li
視頻videohttp://file.papertrans.cn/621/620403/620403.mp4
概述Provides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
圖書封面Titlebook: Machine Learning Methods;  Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U
描述This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis.. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic princip
出版日期Textbook 2024
關鍵詞Machine Learning; Statistical Learning; Supervised Learning; Unsupervised Learning; Classification; Regre
版次1
doihttps://doi.org/10.1007/978-981-99-3917-6
isbn_softcover978-981-99-3919-0
isbn_ebook978-981-99-3917-6
copyrightTsinghua University Press 2024
The information of publication is updating

書目名稱Machine Learning Methods影響因子(影響力)




書目名稱Machine Learning Methods影響因子(影響力)學科排名




書目名稱Machine Learning Methods網絡公開度




書目名稱Machine Learning Methods網絡公開度學科排名




書目名稱Machine Learning Methods被引頻次




書目名稱Machine Learning Methods被引頻次學科排名




書目名稱Machine Learning Methods年度引用




書目名稱Machine Learning Methods年度引用學科排名




書目名稱Machine Learning Methods讀者反饋




書目名稱Machine Learning Methods讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:28:48 | 只看該作者
Hang LiProvides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
板凳
發(fā)表于 2025-3-22 02:47:55 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:57 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:54 | 只看該作者
Perceptron,This chapter first introduces the perceptron model, then describes the learning strategy of the perceptron, especially the loss function, and finally presents perceptron learning algorithms, including the primitive form and the dual form, and proves the algorithm’s convergence.
6#
發(fā)表于 2025-3-22 16:08:52 | 只看該作者
-Nearest Neighbor,This chapter first describes the .-NN algorithm, then discusses the model and three basic elements of .-NN, and finally describes an implementation method of .-NN—the .-tree, focusing on algorithms for constructing and searching the .-tree.
7#
發(fā)表于 2025-3-22 18:57:28 | 只看該作者
8#
發(fā)表于 2025-3-22 22:21:57 | 只看該作者
Decision Tree,This chapter first introduces the basic concept of the decision tree, then introduces feature selection, tree-generation and tree-pruning through ID3 and C4.5 algorithms, and finally introduces the CART algorithm.
9#
發(fā)表于 2025-3-23 02:02:09 | 只看該作者
Logistic Regression and Maximum Entropy Model,This chapter first introduces the logistic regression model, then the maximum entropy model, and finally describes the learning algorithms for logistic regression and maximum entropy models, including the improved iterative scaling algorithm and the Quasi-Newton method.
10#
發(fā)表于 2025-3-23 06:00:44 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
弥渡县| 大同县| 茶陵县| 太仆寺旗| 阜康市| 黑山县| 高唐县| 唐山市| 漳浦县| 崇礼县| 化州市| 涪陵区| 咸宁市| 广汉市| 蕉岭县| 柳江县| 溆浦县| 莱西市| 新泰市| 锡林浩特市| 库尔勒市| 龙游县| 瓦房店市| 苗栗市| 凌云县| 宜兰市| 德州市| 庆阳市| 万山特区| 南丹县| 花莲县| 济宁市| 营口市| 蕲春县| 冕宁县| 西城区| 公主岭市| 宁海县| 湟中县| 宕昌县| 军事|