找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Meets Quantum Physics; Kristof T. Schütt,Stefan Chmiela,Klaus-Robert Müll Book 2020 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 11402|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:16:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Meets Quantum Physics
編輯Kristof T. Schütt,Stefan Chmiela,Klaus-Robert Müll
視頻videohttp://file.papertrans.cn/621/620402/620402.mp4
概述Provides an in-depth referenced work on the physics-based machine learning techniques that model electronic and atomistic properties of matter.Highly interdisciplinary, it focuses on diverse fields of
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Machine Learning Meets Quantum Physics;  Kristof T. Schütt,Stefan Chmiela,Klaus-Robert Müll Book 2020 The Editor(s) (if applicable) and The
描述Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume.?.?..To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI
出版日期Book 2020
關(guān)鍵詞generative models; kernel methods; material modeling; neural networks; gaussian regression; atomistic sim
版次1
doihttps://doi.org/10.1007/978-3-030-40245-7
isbn_softcover978-3-030-40244-0
isbn_ebook978-3-030-40245-7Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning Meets Quantum Physics影響因子(影響力)




書目名稱Machine Learning Meets Quantum Physics影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Meets Quantum Physics網(wǎng)絡(luò)公開度




書目名稱Machine Learning Meets Quantum Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Meets Quantum Physics被引頻次




書目名稱Machine Learning Meets Quantum Physics被引頻次學(xué)科排名




書目名稱Machine Learning Meets Quantum Physics年度引用




書目名稱Machine Learning Meets Quantum Physics年度引用學(xué)科排名




書目名稱Machine Learning Meets Quantum Physics讀者反饋




書目名稱Machine Learning Meets Quantum Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:32:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:55 | 只看該作者
Accurate Molecular Dynamics Enabled by Efficient Physically Constrained Machine Learning Approachesmmetric variant of our model. The symmetric GDML (sGDML) approach is able to faithfully reproduce global force fields at the accuracy high-level ab initio methods, thus enabling sample intensive tasks like molecular dynamics simulations at that level of accuracy. (This chapter is adapted with permis
地板
發(fā)表于 2025-3-22 06:05:52 | 只看該作者
Quantum Machine Learning with Response Operators in Chemical Compound Spaces by including the corresponding operators in the regression (Christensen et al., J Chem Phys 150(6):064105, 2019). FCHL18 was designed to describe an atom in its chemical environment, allowing to measure distances between elements in the periodic table, and consequently providing a metric for both
5#
發(fā)表于 2025-3-22 10:04:48 | 只看該作者
Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processesons. The approach is based on training Gaussian process models of variable complexity by the evolution of the physical functions. We show that, as the complexity of the models increases, they become capable of predicting new transitions. We also show that, where the evolution of the physical functio
6#
發(fā)表于 2025-3-22 13:43:04 | 只看該作者
Molecular Dynamics with Neural Network Potentialsmodel for simulating molecular dipole moments in the framework of predicting infrared spectra via molecular dynamics simulations. Finally, we show that machine learning models can offer valuable aid in understanding chemical systems beyond a simple prediction of quantities.
7#
發(fā)表于 2025-3-22 19:52:44 | 只看該作者
Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemicte that the flexible nature of the sGDML framework captures local and non-local electronic interactions (e.g., H-bonding, lone pairs, steric repulsion, changes in hybridization states (e.g., .), .?→?.. interactions, and proton transfer) without imposing any restriction on the nature of interatomic p
8#
發(fā)表于 2025-3-23 01:12:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:20:21 | 只看該作者
10#
發(fā)表于 2025-3-23 07:51:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 绥化市| 湘潭县| 闵行区| 永泰县| 兴城市| 阜阳市| 绥棱县| 武宣县| 松江区| 渑池县| 于都县| 大竹县| 三台县| 常熟市| 阳朔县| 桂平市| 谢通门县| 灌阳县| 吉隆县| 玛沁县| 阳谷县| 绵竹市| 商洛市| 青海省| 临夏县| 山阳县| 类乌齐县| 南投市| 阿勒泰市| 栾城县| 海兴县| 故城县| 扶沟县| 双辽市| 革吉县| 瑞安市| 镇沅| 永泰县| 云南省| 吴江市|