找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Meets Medical Imaging; First International Kanwal Bhatia,Herve Lombaert Conference proceedings 2015 Springer Internationa

[復(fù)制鏈接]
查看: 46292|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:36:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Meets Medical Imaging
副標題First International
編輯Kanwal Bhatia,Herve Lombaert
視頻videohttp://file.papertrans.cn/621/620401/620401.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning Meets Medical Imaging; First International  Kanwal Bhatia,Herve Lombaert Conference proceedings 2015 Springer Internationa
描述. Normal0falsefalsefalseEN-USX-NONEX-NONE . /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}This book constitutes the revised selected papers of theFirst International Workshop on Machine Learning in Medical Imaging, MLMMI2015, held in July 2015 in Lille, France, in conjunction with the 32ndInternational Conference on Machine Learning, ICML 2015...The 10 papers presented in this volume were carefullyreviewed and selected for inclusion in the book. The papers communicate thespecific needs and nuances of medical imaging to the machine learning communitywhile exposing
出版日期Conference proceedings 2015
關(guān)鍵詞bioinformatics; computational biology; computer vision; machine learning; mathematical analysis; Alzheime
版次1
doihttps://doi.org/10.1007/978-3-319-27929-9
isbn_softcover978-3-319-27928-2
isbn_ebook978-3-319-27929-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Machine Learning Meets Medical Imaging影響因子(影響力)




書目名稱Machine Learning Meets Medical Imaging影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Meets Medical Imaging網(wǎng)絡(luò)公開度




書目名稱Machine Learning Meets Medical Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Meets Medical Imaging被引頻次




書目名稱Machine Learning Meets Medical Imaging被引頻次學(xué)科排名




書目名稱Machine Learning Meets Medical Imaging年度引用




書目名稱Machine Learning Meets Medical Imaging年度引用學(xué)科排名




書目名稱Machine Learning Meets Medical Imaging讀者反饋




書目名稱Machine Learning Meets Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:57:20 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:53 | 只看該作者
Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussianspatio-temporal modelling of image time series relies on the assumption of stationarity of the local spatial correlation, and on the separability between spatial and temporal processes. These assumptions are often made in order to lead to computationally tractable approaches to longitudinal modellin
5#
發(fā)表于 2025-3-22 08:58:18 | 只看該作者
6#
發(fā)表于 2025-3-22 15:55:51 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:04 | 只看該作者
8#
發(fā)表于 2025-3-22 22:01:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:34 | 只看該作者
Feature-Space Transformation Improves Supervised Segmentation Across Scannersfeature distribution. However, if training and test images are acquired with different scanners or scanning parameters, their feature distributions can be very different, which can hurt the performance of such techniques..We propose a feature-space-transformation method to overcome these differences
10#
發(fā)表于 2025-3-23 09:15:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虹口区| 凌云县| 泰州市| 澳门| 潜江市| 阿勒泰市| 陈巴尔虎旗| 仁寿县| 黄骅市| 阿勒泰市| 陇川县| 汉源县| 安岳县| 盖州市| 云南省| 绥芬河市| 彰武县| 武山县| 安新县| 余江县| 梁平县| 碌曲县| 固镇县| 榆中县| 临朐县| 哈尔滨市| 庆元县| 金山区| 门头沟区| 年辖:市辖区| 左贡县| 芮城县| 黄平县| 夏河县| 巧家县| 盐池县| 阿图什市| 洛扎县| 荔波县| 卓资县| 缙云县|