找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Governance for Managers; Francesca Lazzeri,Alexei Robsky Book 2024 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
查看: 14898|回復: 36
樓主
發(fā)表于 2025-3-21 16:29:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Governance for Managers
編輯Francesca Lazzeri,Alexei Robsky
視頻videohttp://file.papertrans.cn/621/620400/620400.mp4
概述Helps data science managers to scale and become more data- and AI-driven.Helps break through the complexity and challenges of moving data science and machine learning projects to production.Helps orga
圖書封面Titlebook: Machine Learning Governance for Managers;  Francesca Lazzeri,Alexei Robsky Book 2024 The Editor(s) (if applicable) and The Author(s), under
描述.Machine Learning Governance for Managers. provides readers with the knowledge to unlock insights from data and leverage AI solutions. In today‘s business landscape, most organizations face challenges in scaling and maintaining a sustainable machine learning model lifecycle. This book offers a comprehensive framework that covers business requirements, data generation and acquisition, modeling, model deployment,?performance measurement,?and management, providing a range of methodologies, technologies, and resources to assist data science managers in adopting data and AI-driven practices.?Particular emphasis is given to?ramping up a solution quickly, detailing skills and techniques to ensure the right things are measured and acted upon for reliable results and high performance..Readers will learn sustainable tools for implementing machine learning with existing IT and privacy policies, including versioning all models, creating documentation, monitoring models and their results, and assessing their causal business impact. By overcoming these challenges, bottom-line gains from AI investments can be realized...Organizations that implement all aspects of AI/ML model governance can achiev
出版日期Book 2024
關鍵詞Machine Learning Governance; MLOps; Machine Learning Operations; Data Science Function and Management; D
版次1
doihttps://doi.org/10.1007/978-3-031-31805-4
isbn_softcover978-3-031-31804-7
isbn_ebook978-3-031-31805-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning Governance for Managers影響因子(影響力)




書目名稱Machine Learning Governance for Managers影響因子(影響力)學科排名




書目名稱Machine Learning Governance for Managers網(wǎng)絡公開度




書目名稱Machine Learning Governance for Managers網(wǎng)絡公開度學科排名




書目名稱Machine Learning Governance for Managers被引頻次




書目名稱Machine Learning Governance for Managers被引頻次學科排名




書目名稱Machine Learning Governance for Managers年度引用




書目名稱Machine Learning Governance for Managers年度引用學科排名




書目名稱Machine Learning Governance for Managers讀者反饋




書目名稱Machine Learning Governance for Managers讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:51:08 | 只看該作者
Francesca Lazzeri,Alexei RobskyHelps data science managers to scale and become more data- and AI-driven.Helps break through the complexity and challenges of moving data science and machine learning projects to production.Helps orga
板凳
發(fā)表于 2025-3-22 00:53:03 | 只看該作者
http://image.papertrans.cn/m/image/620400.jpg
地板
發(fā)表于 2025-3-22 07:25:51 | 只看該作者
5#
發(fā)表于 2025-3-22 11:25:52 | 只看該作者
Understanding Business Goals, a solid strategy to achieve those goals. However, it is very easy to drown in the weeds of metrics and goals and target everything and nothing all at once. Now, this is not to discourage and accuse leaders from establishing wrong goals, but more to provide a different view to measuring what is right.
6#
發(fā)表于 2025-3-22 13:34:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:10:45 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:07 | 只看該作者
,Unifying Organizations’ Machine Learning Vision, operations of data science and machine learning becomes increasingly important. However, scaling data processing infrastructure is not as simple as adding more resources, and there are many challenges that arise when working with increased demand for insights and large datasets that constantly grow.
9#
發(fā)表于 2025-3-23 03:41:59 | 只看該作者
10#
發(fā)表于 2025-3-23 09:36:08 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
轮台县| 安国市| 台中市| 奉新县| 米泉市| 凤凰县| 勃利县| 淮北市| 宜春市| 五莲县| 莱西市| 闽侯县| 闵行区| 黎城县| 台安县| 喀什市| 东港市| 孝昌县| 沭阳县| 柏乡县| 唐河县| 石景山区| 秦皇岛市| 松阳县| 台中县| 凤城市| 巢湖市| 武山县| 修水县| 福清市| 米易县| 嘉义县| 建始县| 沂源县| 治县。| 二手房| 称多县| 桃源县| 方城县| 青冈县| 繁昌县|