找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Control by Symbolic Regression; Askhat Diveev,Elizaveta Shmalko Book 2021 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 7612|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:25:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Control by Symbolic Regression
編輯Askhat Diveev,Elizaveta Shmalko
視頻videohttp://file.papertrans.cn/621/620394/620394.mp4
概述Introduces to a wide audience symbolic regression methods to find functions and laws in a form familiar with engineers.Offers solutions in control automation, and also in the design of completely diff
圖書封面Titlebook: Machine Learning Control by Symbolic Regression;  Askhat Diveev,Elizaveta Shmalko Book 2021 The Editor(s) (if applicable) and The Author(s)
描述This book provides comprehensive coverage on a new direction in computational mathematics research: automatic search for formulas. Formulas must be sought in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and application of numerical methods of symbolic regression to solving control problems, the authors offer?new possibilities not only in the field of control automation,?but also in the design of completely different optimal structures in many fields.?.For specialists in the field of control,?.Machine Learning Control by Symbolic Regression. opens up a new promising direction of research and acquaints scientists with the methods of automatic construction of control systems.For specialists in the fieldof machine learning, the book opens up a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are use
出版日期Book 2021
關(guān)鍵詞optimal control; Symbolic regression; control synthesis; genetic algorithm; analytic programming; Optimal
版次1
doihttps://doi.org/10.1007/978-3-030-83213-1
isbn_softcover978-3-030-83215-5
isbn_ebook978-3-030-83213-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning Control by Symbolic Regression影響因子(影響力)




書目名稱Machine Learning Control by Symbolic Regression影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Control by Symbolic Regression網(wǎng)絡(luò)公開度




書目名稱Machine Learning Control by Symbolic Regression網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Control by Symbolic Regression被引頻次




書目名稱Machine Learning Control by Symbolic Regression被引頻次學(xué)科排名




書目名稱Machine Learning Control by Symbolic Regression年度引用




書目名稱Machine Learning Control by Symbolic Regression年度引用學(xué)科排名




書目名稱Machine Learning Control by Symbolic Regression讀者反饋




書目名稱Machine Learning Control by Symbolic Regression讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:53:06 | 只看該作者
https://doi.org/10.1007/978-3-030-83213-1optimal control; Symbolic regression; control synthesis; genetic algorithm; analytic programming; Optimal
地板
發(fā)表于 2025-3-22 06:03:48 | 只看該作者
Introduction,ocess of control, about artificial intelligence and machine learning, and, of course, about symbolic regression methods, which open up new possibilities not only in the field of control automation, but also in the design of completely different optimal structures, including building structures, technical systems, and even musical works.
5#
發(fā)表于 2025-3-22 11:05:18 | 只看該作者
6#
發(fā)表于 2025-3-22 14:31:30 | 只看該作者
Mathematical Statements of MLC Problems,wn function. The function can be set up to parameters, and then machine learning techniques are used only to adjust the parameters. In general case, both the structure of the function and its parameters should be found.
7#
發(fā)表于 2025-3-22 19:57:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:47:24 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:52 | 只看該作者
Book 2021ught in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and a
10#
發(fā)表于 2025-3-23 07:21:13 | 只看該作者
a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are use978-3-030-83215-5978-3-030-83213-1
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟源县| 平远县| 龙游县| 临颍县| 龙门县| 枞阳县| 广宗县| 包头市| 西畴县| 富阳市| 上林县| 邯郸市| 丹凤县| 宣城市| 搜索| 庆安县| 叶城县| 化隆| 江北区| 重庆市| 金湖县| 柘荣县| 卢龙县| 桦川县| 湛江市| 泰安市| 溧阳市| 泰顺县| 怀仁县| 通许县| 宝应县| 波密县| 凌源市| 罗甸县| 潍坊市| 柳林县| 禹城市| 大厂| 泉州市| 甘孜县| 开原市|