找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization; Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman Book 2024

[復(fù)制鏈接]
查看: 11730|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:55:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization
編輯Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman
視頻videohttp://file.papertrans.cn/621/620390/620390.mp4
概述Dedicated to machine learning based performance enhancements in evolutionary multi- and many objective optimization.Discusses the topics in a clear and structured manner, covering the search, post-opt
叢書名稱Genetic and Evolutionary Computation
圖書封面Titlebook: Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization;  Dhish Kumar Saxena,Sukrit Mittal,Erik D. Goodman Book 2024
描述This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMaO). EMaO algorithms, namely EMaOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMaOAs amenable to application of ML for different pursuits.?.Recognizing the immense potential for ML-based enhancements in the EMaO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.?To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.?Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMaO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed
出版日期Book 2024
關(guān)鍵詞Evolutionary Multi-objective Optimization; Machine Learning; Evolutionary Computation; Convergence; Dive
版次1
doihttps://doi.org/10.1007/978-981-99-2096-9
isbn_softcover978-981-99-2098-3
isbn_ebook978-981-99-2096-9Series ISSN 1932-0167 Series E-ISSN 1932-0175
issn_series 1932-0167
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization影響因子(影響力)




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization網(wǎng)絡(luò)公開(kāi)度




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization被引頻次




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization被引頻次學(xué)科排名




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization年度引用




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization年度引用學(xué)科排名




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization讀者反饋




書目名稱Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:30 | 只看該作者
Investigating Innovized Progress Operators with Different ML Methods,used in these operators was not discussed. However, to endorse the robustness of the proposed (IP2, IP3, and UIP) operators, it is imperative to investigate how significantly their performance can be influenced when the underlying ML methods are varied.
板凳
發(fā)表于 2025-3-22 00:54:11 | 只看該作者
,Learning to Analyze the?Pareto-Optimal Front, vectors in the .-approximation (.?in?.), and their underlying variable vectors (.?in?.). Subsequently, the trained ML model is applied to predict the solution’s . vector for any desired pseudo-weight vector. In other words, the trained ML model is used to create new non-dominated solutions in any d
地板
發(fā)表于 2025-3-22 07:53:02 | 只看該作者
Book 2024converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed
5#
發(fā)表于 2025-3-22 11:08:22 | 只看該作者
tutionen in der Konstitution von Differenzordnungen spielen.?Der Band leistet dadurch einen wertvollen Beitrag zur (empirischen) erziehungswissenschaftlichen Differenzforschung.978-3-658-37327-6978-3-658-37328-3Series ISSN 2524-8731 Series E-ISSN 2524-874X
6#
發(fā)表于 2025-3-22 13:57:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:39:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:51:17 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:04 | 只看該作者
Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb,Erik D. Goodmanelle Strukturen hermachen. In ihnen finden sie nicht nur einen Gegenstand, den man über gesetz- gebende Parlamentsbeschlüsse vergleichsweise leicht ver?ndern k?nnte; sie kapri- zieren sich zugleich auf einen Aspekt des (Aus-)Bildtingsgeschehens, der ihnen intellektuell mit eher bescheidenem Aufwand bew?ltigba978-3-8100-3055-9978-3-663-10645-6
10#
發(fā)表于 2025-3-23 07:33:28 | 只看該作者
Dhish Kumar Saxena,Sukrit Mittal,Kalyanmoy Deb,Erik D. Goodmanund t?tigkeitsbezogene Formen der Vermittlung in den Blick. Aus einer didaktischen Perspektive entsteht damit die Frage nach einer angemessenen Ausrichtung der kaufm?nnischen Aus- und Weiterbildung. Aus der hier bezogenen Position bedeutet das, für die Berufsschule eine Ortsbestimmung aufzubauen, zu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 11:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁都县| 西乌| 龙南县| 维西| 衡水市| 鄂托克旗| 神农架林区| 敦化市| 饶阳县| 博客| 济阳县| 从江县| 通州市| 郑州市| 郁南县| 西充县| 冕宁县| 商都县| 万荣县| 平凉市| 宜宾县| 乐亭县| 岳普湖县| 西充县| 南通市| 武穴市| 大同市| 沙坪坝区| 株洲县| 八宿县| 云霄县| 刚察县| 双辽市| 重庆市| 昌图县| 嘉兴市| 辽源市| 安西县| 苏尼特右旗| 哈尔滨市| 翁源县|