找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring; Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive

[復(fù)制鏈接]
查看: 30485|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:07:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring
編輯Roberto Bonfigli,Stefano Squartini
視頻videohttp://file.papertrans.cn/621/620389/620389.mp4
叢書(shū)名稱(chēng)SpringerBriefs in Energy
圖書(shū)封面Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring;  Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive
描述Research on Smart Grids has recently focused on the energy monitoring issue, with the objective of maximizing the user consumption awareness in building contexts on the one hand, and providing utilities with a detailed description of customer habits on the other. In particular, .Non-Intrusive Load Monitoring (NILM)., the subject of this book, .represents one of the hottest topics in Smart Grid applications.. NILM refers to those techniques aimed at decomposing the consumption-aggregated data acquired at a single point of measurement into the diverse consumption profiles of appliances operating in the electrical system under study.?.This book provides a status report on the most promising NILM methods, with an overview of the publically available dataset on which the algorithm and experiments are based. Of the proposed methods, those based on the Hidden Markov Model (HMM) and the Deep Neural Network (DNN) are the best performing and most interesting from the future improvement point of view.. One method from each category has been selected and the performance improvements achieved are described. Comparisons are made between the two reference techniques, and pros and cons are conside
出版日期Book 2020
關(guān)鍵詞Smart Grid; Non-Intrusive Load Monitoring (NILM); Deep Neural Network (DNN); Factorial Hidden Markov Mo
版次1
doihttps://doi.org/10.1007/978-3-030-30782-0
isbn_softcover978-3-030-30781-3
isbn_ebook978-3-030-30782-0Series ISSN 2191-5520 Series E-ISSN 2191-5539
issn_series 2191-5520
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring被引頻次




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring讀者反饋




書(shū)目名稱(chēng)Machine Learning Approaches to Non-Intrusive Load Monitoring讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:51:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:05 | 只看該作者
Roberto Bonfigli,Stefano Squartiniinnen konfrontiert, den die Planerinnen selbst hervorgerufen hatten. In ihren Augen war die ifu ein Vorgriff auf eine allgemeine Hochschulreform und in dieser Hinsicht als Pionierleistung für ?eine andere Universit?t“ zu sehen. Von den vielf?ltigen Zielen wurde der Hochschulreformcharakter, die Abse
5#
發(fā)表于 2025-3-22 10:28:20 | 只看該作者
6#
發(fā)表于 2025-3-22 13:08:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:00:40 | 只看該作者
Roberto Bonfigli,Stefano Squartinichungsergebnisse zum Diskurs um Lernen und Lehren in DiffereLehren und Lernen findet innerhalb gesellschaftlicher Verh?ltnisse statt, die von Differenzordnungen gepr?gt sind und oft unter den Labels Diversity, Heterogenit?t und Inklusion diskutiert werden. Die entlang von Markierungen wie etwa?.race
8#
發(fā)表于 2025-3-22 23:59:07 | 只看該作者
9#
發(fā)表于 2025-3-23 05:15:16 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦县| 永吉县| 宝丰县| 观塘区| 会昌县| 旬阳县| 喀喇沁旗| 绍兴县| 齐齐哈尔市| 衡南县| 监利县| 临清市| 湖州市| 丰镇市| 仁布县| 沾化县| 灵台县| 翁源县| 苏尼特左旗| 萨嘎县| 普陀区| 汤阴县| 岗巴县| 西乌珠穆沁旗| 宾川县| 沂南县| 临泽县| 密云县| 马关县| 错那县| 灵台县| 元阳县| 高碑店市| 克什克腾旗| 吉木乃县| 肥城市| 崇仁县| 碌曲县| 长阳| 常州市| 东丰县|