找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector; Vitor Joao Pereira Domingues Martinho Book

[復(fù)制鏈接]
查看: 6758|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:34:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector
編輯Vitor Joao Pereira Domingues Martinho
視頻videohttp://file.papertrans.cn/621/620385/620385.mp4
概述Shows how to identify the crucial variables needed to solve agricultural production unit management challenges.Contains many tables and diagrams to illustrate the book‘s message.Useful to students, pu
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector;  Vitor Joao Pereira Domingues Martinho Book
描述.This book presents machine learning approaches to identify the most important predictors of crucial variables for dealing with the challenges of managing production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN)..Presently, statistical databases present a lot of information for many indicators and, in these contexts, one of the main tasks is to identify the most important predictors of certain indicators. In this way, the book presents approaches to identifying the most relevant variables that best support the design of adjusted farming policies and management plans. These subjects are currently important for students, public institutions and farmers. To achieve these objectives, the book considers the IBM SPSS Modeler procedures as well as the respective models suggested by this software..The book is read by students in production engineering, economics and agricultural studies, public bodies and managers in the farming sector..
出版日期Book 2024
關(guān)鍵詞Farm Accountancy Data Network; European Union Farms; Common Agricultural Policy; Machine Learning Appro
版次1
doihttps://doi.org/10.1007/978-3-031-54608-2
isbn_softcover978-3-031-54607-5
isbn_ebook978-3-031-54608-2Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector影響因子(影響力)




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector網(wǎng)絡(luò)公開度




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector被引頻次




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector被引頻次學(xué)科排名




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector年度引用




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector年度引用學(xué)科排名




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector讀者反饋




書目名稱Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:29 | 只看該作者
978-3-031-54607-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
板凳
發(fā)表于 2025-3-22 02:15:12 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:24 | 只看該作者
Vitor Joao Pereira Domingues MartinhoShows how to identify the crucial variables needed to solve agricultural production unit management challenges.Contains many tables and diagrams to illustrate the book‘s message.Useful to students, pu
5#
發(fā)表于 2025-3-22 09:44:24 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/m/image/620385.jpg
6#
發(fā)表于 2025-3-22 14:20:26 | 只看該作者
Book 2024ging production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN)..Presently, statistical databases present a lot of information for many indicators and, in t
7#
發(fā)表于 2025-3-22 17:50:05 | 只看該作者
Predictive Machine Learning Approaches to Agricultural Output, European Union farming output, taking into account machine learning approaches and statistical information from the Farm Accountancy Data Network. The results obtained highlight the most important farming variables that must be taken into account to predict the total output in the European Union farms.
8#
發(fā)表于 2025-3-22 23:22:27 | 只看該作者
Applying Artificial Intelligence to Predict Crop Output, Network were considered, as well as approaches associated with artificial intelligence. The main findings provide relevant insights and knowledge, namely for farmers and policymakers that may be considered in the processes of agricultural planning, management and policy design.
9#
發(fā)表于 2025-3-23 01:22:29 | 只看該作者
Predictive Machine Learning Models for Livestock Output, to suggest models and predictors to support the farmers and other stakeholders to better design policies and farm plans. Statistical information from the European Union databases was considered. The results found are useful tools to improve the performance of the European Union farms, particularly those specialised in livestock production.
10#
發(fā)表于 2025-3-23 06:04:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 10:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝感市| 黄大仙区| 偏关县| 万山特区| 苍南县| 辽源市| 兰坪| 大关县| 兴义市| 沐川县| 沁水县| 霍林郭勒市| 秦皇岛市| 剑阁县| 胶南市| 上林县| 长乐市| 三河市| 维西| 溧水县| 永济市| 大埔区| 厦门市| 石景山区| 阿坝| 思茅市| 汾阳市| 思南县| 武清区| 平昌县| 英吉沙县| 广宁县| 贡山| 江源县| 贵州省| 融水| 嘉定区| 南郑县| 永清县| 沙河市| 红安县|