找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning; An Artificial Intell Ryszard S. Michalski (Professor of Computer Scienc Book 1983 Springer-Verlag Berlin Heidelberg 1983

[復(fù)制鏈接]
查看: 25321|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:43:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning
副標題An Artificial Intell
編輯Ryszard S. Michalski (Professor of Computer Scienc
視頻videohttp://file.papertrans.cn/621/620374/620374.mp4
叢書名稱Symbolic Computation
圖書封面Titlebook: Machine Learning; An Artificial Intell Ryszard S. Michalski (Professor of Computer Scienc Book 1983 Springer-Verlag Berlin Heidelberg 1983
描述The ability to learn is one of the most fundamental attributes of intelligent behavior. Consequently, progress in the theory and computer modeling of learn- ing processes is of great significance to fields concerned with understanding in- telligence. Such fields include cognitive science, artificial intelligence, infor- mation science, pattern recognition, psychology, education, epistemology, philosophy, and related disciplines. The recent observance of the silver anniversary of artificial intelligence has been heralded by a surge of interest in machine learning-both in building models of human learning and in understanding how machines might be endowed with the ability to learn. This renewed interest has spawned many new research projects and resulted in an increase in related scientific activities. In the summer of 1980, the First Machine Learning Workshop was held at Carnegie-Mellon University in Pittsburgh. In the same year, three consecutive issues of the Inter- national Journal of Policy Analysis and Information Systems were specially devoted to machine learning (No. 2, 3 and 4, 1980). In the spring of 1981, a special issue of the SIGART Newsletter No. 76 reviewed current res
出版日期Book 1983
關(guān)鍵詞Lernender Automat; Mathematische Lerntheorie; artificial intelligence; behavior; cognition; epistemology;
版次1
doihttps://doi.org/10.1007/978-3-662-12405-5
isbn_softcover978-3-662-12407-9
isbn_ebook978-3-662-12405-5
copyrightSpringer-Verlag Berlin Heidelberg 1983
The information of publication is updating

書目名稱Machine Learning影響因子(影響力)




書目名稱Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Machine Learning網(wǎng)絡(luò)公開度




書目名稱Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning被引頻次




書目名稱Machine Learning被引頻次學(xué)科排名




書目名稱Machine Learning年度引用




書目名稱Machine Learning年度引用學(xué)科排名




書目名稱Machine Learning讀者反饋




書目名稱Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:39 | 只看該作者
Why Should Machines Learn?that symposium was also learning. The difficulty with plagiarizing that paper is that it was really about psychology, whereas this book is concerned with machine learning. Now although we all believe machines can simulate human thought—unless we’re vitalists, and there aren’t any of those around any
板凳
發(fā)表于 2025-3-22 04:14:03 | 只看該作者
A Comparative Review of Selected Methods for Learning from Examplescriptions of single concepts. In particular, we examine methods for finding the maximally-specific conjunctive generalizations (MSC-generalizations) that cover all of the training examples of a given concept. Various important aspects of structural learning in general are examined, and several crite
地板
發(fā)表于 2025-3-22 05:06:12 | 只看該作者
A Theory and Methodology of Inductive Learningnference rules to the initial observational statements. The inference rules include generalization rules, which perform generalizing transformations on descriptions, and conventional truth-preserving deductive rules. The application of the inference rules to descriptions is constrained by problem ba
5#
發(fā)表于 2025-3-22 10:19:10 | 只看該作者
Learning by Analogy: Formulating and Generalizing Plans from Past Experiencecal problem solving based on an extension to means-ends analysis. An analogical transformation process is developed to extract knowledge from past successful problem-solving situations that bear a strong similarity to the current problem. Then, the investigation focuses on exploiting and extending t
6#
發(fā)表于 2025-3-22 15:15:11 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:14 | 只看該作者
Acquisition of Proof Skills in Geometrygeometry problem. A general control structure is proposed for integrating backward and forward search in proof planning. This is embodied in a production system framework. Two types of learning are described. . compilation is concerned. with how students transit from a declarative characterization o
8#
發(fā)表于 2025-3-23 00:07:27 | 只看該作者
9#
發(fā)表于 2025-3-23 01:52:25 | 只看該作者
10#
發(fā)表于 2025-3-23 08:02:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝山区| 璧山县| 芦溪县| 台南县| 昂仁县| 芜湖县| 江阴市| 苏尼特左旗| 陇西县| 重庆市| SHOW| 高雄市| 若尔盖县| 高邑县| 察雅县| 宁化县| 蓝田县| 冀州市| 江陵县| 西乌珠穆沁旗| 池州市| 景宁| 宿州市| 鹤庆县| 金门县| 来宾市| 九龙城区| 当涂县| 龙岩市| 仪陇县| 仙游县| 称多县| 余庆县| 白河县| 肇东市| 当涂县| 五河县| 抚顺市| 宝应县| 土默特右旗| 武鸣县|