找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning; The Basics Alexander Jung Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
查看: 6925|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:53:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning
副標(biāo)題The Basics
編輯Alexander Jung
視頻videohttp://file.papertrans.cn/621/620371/620371.mp4
概述Proposes a simple three-component approach to formalizing machine learning problems and methods.Interprets typical machine learning methods using the unified scientific cycle model: forming hypothesis
叢書名稱Machine Learning: Foundations, Methodologies, and Applications
圖書封面Titlebook: Machine Learning; The Basics Alexander Jung Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin
描述Machine learning (ML) has become a commonplace element in our everyday lives and a?standard tool for many fields of science and engineering. To make optimal use of ML, it is?essential to understand its underlying principles.?.This book approaches ML as the computational implementation of the scientific principle.?This principle consists of continuously adapting a model of a given data-generating?phenomenon by minimizing some form of loss incurred by its predictions.?.The book trains readers to break down various ML applications and methods in terms of?data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods..The book’s three-component approach to ML provides uniform coverage of a wide range of?concepts and techniques. As a case in point, techniques for regularization, privacy-preservation?as well as explainability amount tospecific design choices for the model, data, and loss of a ML method.?.
出版日期Textbook 2022
關(guān)鍵詞Machine Learning; Modelling; Artificial Intelligence; Deep Learning; Optimization; Data Analysis; Signal P
版次1
doihttps://doi.org/10.1007/978-981-16-8193-6
isbn_softcover978-981-16-8195-0
isbn_ebook978-981-16-8193-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Learning影響因子(影響力)




書目名稱Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Machine Learning網(wǎng)絡(luò)公開度




書目名稱Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning被引頻次




書目名稱Machine Learning被引頻次學(xué)科排名




書目名稱Machine Learning年度引用




書目名稱Machine Learning年度引用學(xué)科排名




書目名稱Machine Learning讀者反饋




書目名稱Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:19 | 只看該作者
Alexander Jungegungen waren das . und das . Ist nun eine Raumkurve . gegeben, so kann man ebenso die m?glichen Bewegungen einer Geraden t betrachten, bei denen sie stets Tangente von . bleibt. Durch diese Bedingung allein ist indes eine solche Bewegung der Geraden im Raum noch nicht eindeutig bestimmt, weil sie s
板凳
發(fā)表于 2025-3-22 01:31:28 | 只看該作者
Alexander JungDas der geographischen Ortsbestimmung dienende Gradnetz der Erde geht dabei in das Gradnetz des Globus über, das einerseits aus den Gro?kreisen besteht, die durch zwei diametral gegenüberliegende Punkte, den . und den ., gehen und . hei?en, und anderseits aus den Parallelkreisen, die die Meridiane r
地板
發(fā)表于 2025-3-22 06:43:26 | 只看該作者
5#
發(fā)表于 2025-3-22 08:48:43 | 只看該作者
Introduction, choose the right gear (clothing, wax) it is vital to have some idea for the maximum daytime temperature which is typically reached around early afternoon. If we expect a maximum daytime temperature of around plus 5 degrees, we might not put on the extra warm jacket but rather take only some extra s
6#
發(fā)表于 2025-3-22 16:37:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:29:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:11 | 只看該作者
Model Validation and Selection,s . that incurs minimum average loss on some labeled data points that serve as the .. We refer to the average loss incurred by a hypothesis on the training set as the training error. The minimum average loss achieved by a hypothesis that solves the ERM might be referred to as the training error of t
9#
發(fā)表于 2025-3-23 03:29:55 | 只看該作者
Feature Learning,urally from the available hard and software. For example, we might use the numeric measurement . delivered by a sensing device as a feature. However, we could augment this single feature with new features such as the powers . and . or adding a constant .. Each of these computations produces a new fe
10#
發(fā)表于 2025-3-23 08:13:02 | 只看該作者
Transparent and Explainable ML,rent (or explainable) as explainable ML. Providing explanations for the predictions of a ML method is particulary important when these predictions inform decision making [.]. Explanations for automated decision making system have become a legal requirement [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邻水| 桐庐县| 太和县| 藁城市| 桂林市| 洪江市| 京山县| 景洪市| 台湾省| 定襄县| 长岭县| 阿合奇县| 玉树县| 吉木萨尔县| 枣强县| 塘沽区| 丹凤县| 伽师县| 宜良县| 巴南区| 邵阳市| 翼城县| 东乡县| 永清县| 南溪县| 开封县| 池州市| 青龙| 湖北省| 巴彦淖尔市| 徐闻县| 临夏市| 梧州市| 岗巴县| 德兴市| 新源县| 沂源县| 陆河县| 盐边县| 凤翔县| 行唐县|