找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Intelligence and Emerging Technologies; First International Md. Shahriare Satu,Mohammad Ali Moni,Mohammad Sham Conference proceedi

[復(fù)制鏈接]
樓主: Fillmore
11#
發(fā)表于 2025-3-23 13:16:36 | 只看該作者
A Reliable and?Efficient Transfer Learning Approach for?Identifying COVID-19 Pneumonia from?Chest X- pathogenic laboratory testing, but it has a high risk of false negatives, forcing the development of additional diagnostic approaches to combat the disease. X-ray imaging is a straightforward and patient-friendly operation that may be performed in almost any healthcare facility. The aim of the repo
12#
發(fā)表于 2025-3-23 17:41:30 | 只看該作者
13#
發(fā)表于 2025-3-23 21:40:00 | 只看該作者
Convolutional Neural Network Model to?Detect COVID-19 Patients Utilizing Chest X-Ray Images X-ray datasets of COVID-19 infected patients from Kaggle and Github, and pre-processed it using random sampling. Then, we proposed an enhanced convolutional neural network (CNN) model to this dataset and obtained a 94.03% accuracy, 95.52% AUC and 94.03% f-measure for detecting COVID-19 patients. We
14#
發(fā)表于 2025-3-24 01:40:14 | 只看該作者
Classification of?Tumor Cell Using a?Naive Convolutional Neural Network Modelight, radon gas, infectious agents etc. To diagnose the tumor cell promptly nowadays computer-aided detection (CAD) systems using a convolutional neural network (CNN) draws a significant role in the health sector. Many complicated CNN model has been introduced to effectively classify tumor cell but
15#
發(fā)表于 2025-3-24 04:48:21 | 只看該作者
Tumor-TL: A Transfer Learning Approach for Classifying Brain Tumors from MRI Imageshanisms that normally govern normal cells. The identification and segmentation of brain tumors are among the most common difficult and time-consuming tasks when processing medical images. MRI is a medical imaging technique that allows radiologists to see within body structures without requiring surg
16#
發(fā)表于 2025-3-24 10:25:33 | 只看該作者
Deep Convolutional Comparison Architecture for Breast Cancer Binary Classificationtly leads to pathologists disagreeing. Recently, much research has tried to develop the best breast cancer classification models to help pathologists make more precise diagnoses. Consequently, convolutional networks are prominent in biomedical imaging because they discover significant features and a
17#
發(fā)表于 2025-3-24 13:10:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:53 | 只看該作者
Brain Tumor Detection Using Deep Network EfficientNet-B0ge. However, catching a brain tumor with a bare eye could sometimes lead to misguidance or be costly to find someone who is a master in this field. So, the deep learning (DL) method is a boon for detecting tumors from images in the health sector. Here, we are going to propose a DL-based modified mod
19#
發(fā)表于 2025-3-24 20:33:34 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌图县| 琼海市| 怀远县| 沙坪坝区| 灵璧县| 肇庆市| 苍溪县| 新津县| 宜宾县| 武冈市| 钦州市| 荣成市| 黑龙江省| 余姚市| 连南| 前郭尔| 田阳县| 三都| 英德市| 饶阳县| 芦山县| 广饶县| 肃北| 恩施市| 黄陵县| 通河县| 永泰县| 六枝特区| 通州市| 商丘市| 西盟| 平阳县| 嘉兴市| 威海市| 成武县| 安阳市| 涪陵区| 安宁市| 弥渡县| 海原县| 鹿泉市|