找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Intelligence and Big Data Analytics for Cybersecurity Applications; Yassine Maleh,Mohammad Shojafar,Youssef Baddi Book 2021 The Ed

[復(fù)制鏈接]
查看: 34367|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:42:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications
編輯Yassine Maleh,Mohammad Shojafar,Youssef Baddi
視頻videohttp://file.papertrans.cn/621/620350/620350.mp4
概述Presents the latest discoveries in terms of machine intelligence and Big data analytics techniques and methods for cybersecurity and privacy.Proposes many case studies and applications of machine inte
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Machine Intelligence and Big Data Analytics for Cybersecurity Applications;  Yassine Maleh,Mohammad Shojafar,Youssef Baddi Book 2021 The Ed
描述.This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploringthe latest advances on machine intelligence and big data analytics for cybersecurity applications...?..?.
出版日期Book 2021
關(guān)鍵詞Cybersecurity; Machine Intelligence; Big Data; Forensics; Cybercrime; Deep Learning; Machine Learning; Cybe
版次1
doihttps://doi.org/10.1007/978-3-030-57024-8
isbn_softcover978-3-030-57026-2
isbn_ebook978-3-030-57024-8Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications影響因子(影響力)




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications影響因子(影響力)學(xué)科排名




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications網(wǎng)絡(luò)公開度




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications被引頻次




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications被引頻次學(xué)科排名




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications年度引用




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications年度引用學(xué)科排名




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications讀者反饋




書目名稱Machine Intelligence and Big Data Analytics for Cybersecurity Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:36:27 | 只看該作者
地板
發(fā)表于 2025-3-22 04:49:33 | 只看該作者
5#
發(fā)表于 2025-3-22 10:08:56 | 只看該作者
Improving Cyber-Threat Detection by?Moving the Boundary Around the?Normal Samplesdetection models in various scenarios. However, it often suffers from training data over-fitting. In this paper, we propose a supervised machine learning method for cyber-threat detection, which modifies the training set to reduce data over-fitting when training a deep neural network. This is done b
6#
發(fā)表于 2025-3-22 13:38:15 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:48:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:08:34 | 只看該作者
IntAnti-Phish: An Intelligent Anti-Phishing Framework Using Backpropagation Neural Network the field of cybersecurity. Many researchers have already proposed several anti-phishing approaches to detect phishing in terms of email, webpages, images, or links. This study also aimed to propose and implement an intelligent framework to detect phishing URLs (Uniform Resource Locator). It has be
10#
發(fā)表于 2025-3-23 07:18:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴塘县| 淮安市| 自治县| 内丘县| 黄冈市| 威宁| 灌云县| 武川县| 南溪县| 绥滨县| 邓州市| 简阳市| 兴海县| 旬邑县| 安龙县| 连州市| 南昌县| 平阳县| 南丰县| 和林格尔县| 犍为县| 盖州市| 琼中| 玛曲县| 榆中县| 徐州市| 白沙| 宁海县| 蓝山县| 克什克腾旗| 裕民县| 虞城县| 绵阳市| 石嘴山市| 福建省| 墨玉县| 塔城市| 邢台市| 永安市| 鹤岗市| 齐齐哈尔市|