找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Intelligence Techniques for Data Analysis and Signal Processing; Proceedings of the 4 Dilip Singh Sisodia,Lalit Garg,M. Tanveer Con

[復制鏈接]
樓主: 召喚
11#
發(fā)表于 2025-3-23 11:25:36 | 只看該作者
Effective Heart Disease Prediction Using Hybrid Ensemble Learning Model,of ML techniques that ultimately results in improving the accuracy and performance. The prediction model is done with a fusion of attributes (features) and many familiar classification models. We generate an embellished performance of the model with an accuracy of 88.88% through hybrid ensemble learning model.
12#
發(fā)表于 2025-3-23 15:31:09 | 只看該作者
A SAR ATR Using a New Convolutional Neural Network Framework,thors anticipated a new convolutional neural network (CNN) for SAR object classification based of despeckling. The experiment is performed on the MSTAR dataset. Experimental results of the current study showed that the proposed CNN model has resulted in an excellent training accuracy of 99.67 % and validation accuracy of 98.98%.
13#
發(fā)表于 2025-3-23 19:49:20 | 只看該作者
ColCompNeT: Deep Learning-Based Colorization-Based Coding Network,en proposed in which concept of parallel training of colorization and compression network is utilized. With the proposed algorithm, a maximum bit saving of 36.45% is achieved with the improved objective and subjective performance when compared with the state-of-the-art methods.
14#
發(fā)表于 2025-3-23 22:54:41 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:15 | 只看該作者
,Texture Classification Using ResNet and?EfficientNet,per are the ResNetV2 and the EfficientNet-B4 paper. The proposed models are trained and tested on the Kylberg data set, a widely used texture data set. The two models attained accuracies of 99.78% and 92.97%, respectively.
16#
發(fā)表于 2025-3-24 10:03:29 | 只看該作者
17#
發(fā)表于 2025-3-24 13:29:33 | 只看該作者
d tritt erst nachtr?glich eine Korkhautbildung ein. Nur die durch ?ussere mechanische Ursachen veranlassten Wunden, durch welche innere lebende Gewebe blossgelegt und den nachtheiligen Einflüssen der Aussenwelt preisgegeben werden, geh?ren zu den pathologischen Erscheinungen.
18#
發(fā)表于 2025-3-24 16:08:46 | 只看該作者
Rahul Shrivastava,Dilip Singh Sisodia,Naresh Kumar Nagwanid tritt erst nachtr?glich eine Korkhautbildung ein. Nur die durch ?ussere mechanische Ursachen veranlassten Wunden, durch welche innere lebende Gewebe blossgelegt und den nachtheiligen Einflüssen der Aussenwelt preisgegeben werden, geh?ren zu den pathologischen Erscheinungen.
19#
發(fā)表于 2025-3-24 21:23:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:35:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
山阳县| 武冈市| 栾川县| 靖安县| 汶川县| 册亨县| 秦安县| 柳江县| 乐陵市| 板桥市| 罗田县| 吉木萨尔县| 汶上县| 昌邑市| 宁海县| 海安县| 凤台县| 阜城县| 邵阳市| 泰安市| 隆德县| 萨迦县| 普陀区| 宁陕县| 阿拉善左旗| 平凉市| 芮城县| 八宿县| 宝山区| 莆田市| 绿春县| 西城区| 高要市| 安塞县| 灵丘县| 阳西县| 雅安市| 青川县| 随州市| 郴州市| 望城县|