找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MR Spectroscopy of Pediatric Brain Disorders; Stefan Blüml,Ashok Panigrahy Book 2013 Springer Science+Business Media, LLC 2013

[復(fù)制鏈接]
樓主: 夾子
21#
發(fā)表于 2025-3-25 07:05:06 | 只看該作者
In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
22#
發(fā)表于 2025-3-25 09:42:19 | 只看該作者
In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
23#
發(fā)表于 2025-3-25 13:24:25 | 只看該作者
24#
發(fā)表于 2025-3-25 17:34:19 | 只看該作者
Stefan Blüml Ph.D.In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
25#
發(fā)表于 2025-3-25 20:00:13 | 只看該作者
26#
發(fā)表于 2025-3-26 00:13:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:20:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:15:09 | 只看該作者
Simrandip K. Gill,Ashok Panigrahy M.D.,Theodoros N. Arvanitis Ph.D.,Andrew C. Peet Ph.D., F.R.C.P.C.In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
29#
發(fā)表于 2025-3-26 13:58:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁甸县| 宿州市| 信丰县| 阜宁县| 哈尔滨市| 保康县| 体育| 武冈市| 皮山县| 东辽县| 永宁县| 博白县| 舟山市| 分宜县| 都安| 梅河口市| 法库县| 绥滨县| 定西市| 界首市| 两当县| 诸暨市| 新化县| 出国| 天长市| 普格县| 任丘市| 郁南县| 黄大仙区| 杭州市| 禹城市| 囊谦县| 宽甸| 香港| 湘阴县| 大方县| 灵武市| 酉阳| 麻江县| 益阳市| 古田县|