找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MODA 5 - Advances in Model-Oriented Data Analysis and Experimental Design; Proceedings of the 5 Anthony C. Atkinson,Luc Pronzato,Henry P. W

[復制鏈接]
31#
發(fā)表于 2025-3-26 21:03:25 | 只看該作者
Asymptotic Upper Bounds for the Optimal Design Length in Factor Screening Experimentsvalues of ..and ..and n → ∞. We prove a general result allowing us in many particular cases to get the asymptotic law for . (n),n → ∞. We then apply this result to derive asymptotic upper bounds for the optimal design length in the problem of binary screening.
32#
發(fā)表于 2025-3-27 03:16:10 | 只看該作者
Breakdown Points of Estimators for Aspects of Linear Modelsr the question is considered whether a high breakdown point of the estimator .for β implies a high breakdown point of ..It is shown that the breakdown point behavior depends strongly on the design as is the case for estimating the whole parameter vector β.
33#
發(fā)表于 2025-3-27 07:10:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:19 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:09 | 只看該作者
Analytical Theory of E-Optimal Designs for Polynomial Regression on a Segmentf E—optimal designs as functions of the location point and the length of segments. Such an approach was developed in a number of previous author’s papers. Here we give a review of basic results obtained in this way. The theory is illustrated for quadratic regression on an arbitrary segment.
36#
發(fā)表于 2025-3-27 20:56:34 | 只看該作者
D-Optimal Designs for Weighted Polynomial Regression Without any Initial Termsrt points are equal, the optimal designs can be computed analytically. The supports of the optimal designs found are related to the zeros of an orthogonal polynomial or to an eigenvector of a special tridiagonal matrix.
37#
發(fā)表于 2025-3-27 22:38:36 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:58 | 只看該作者
40#
發(fā)表于 2025-3-28 13:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
墨竹工卡县| 庐江县| 合阳县| 黎城县| 万安县| 周口市| 贵州省| 云霄县| 峡江县| 留坝县| 定远县| 宜兰市| 兴海县| 上思县| 林州市| 印江| 卫辉市| 游戏| 镇赉县| 清涧县| 富锦市| 会同县| 新晃| 大田县| 平塘县| 松原市| 苍梧县| 石嘴山市| 定安县| 屏东市| 唐山市| 东莞市| 祥云县| 阳高县| 五常市| 巩义市| 辰溪县| 怀集县| 昌江| 彭州市| 新源县|