找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MODA 5 - Advances in Model-Oriented Data Analysis and Experimental Design; Proceedings of the 5 Anthony C. Atkinson,Luc Pronzato,Henry P. W

[復制鏈接]
31#
發(fā)表于 2025-3-26 21:03:25 | 只看該作者
Asymptotic Upper Bounds for the Optimal Design Length in Factor Screening Experimentsvalues of ..and ..and n → ∞. We prove a general result allowing us in many particular cases to get the asymptotic law for . (n),n → ∞. We then apply this result to derive asymptotic upper bounds for the optimal design length in the problem of binary screening.
32#
發(fā)表于 2025-3-27 03:16:10 | 只看該作者
Breakdown Points of Estimators for Aspects of Linear Modelsr the question is considered whether a high breakdown point of the estimator .for β implies a high breakdown point of ..It is shown that the breakdown point behavior depends strongly on the design as is the case for estimating the whole parameter vector β.
33#
發(fā)表于 2025-3-27 07:10:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:19 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:09 | 只看該作者
Analytical Theory of E-Optimal Designs for Polynomial Regression on a Segmentf E—optimal designs as functions of the location point and the length of segments. Such an approach was developed in a number of previous author’s papers. Here we give a review of basic results obtained in this way. The theory is illustrated for quadratic regression on an arbitrary segment.
36#
發(fā)表于 2025-3-27 20:56:34 | 只看該作者
D-Optimal Designs for Weighted Polynomial Regression Without any Initial Termsrt points are equal, the optimal designs can be computed analytically. The supports of the optimal designs found are related to the zeros of an orthogonal polynomial or to an eigenvector of a special tridiagonal matrix.
37#
發(fā)表于 2025-3-27 22:38:36 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:58 | 只看該作者
40#
發(fā)表于 2025-3-28 13:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广灵县| 南投市| 宣武区| 潼南县| 扎兰屯市| 巴青县| 仁怀市| 正镶白旗| 肥乡县| 庆云县| 天等县| 浑源县| 辽宁省| 木兰县| 南丹县| 山西省| 二连浩特市| 新泰市| 盐城市| 新巴尔虎右旗| 永新县| 扶绥县| 五河县| 孟州市| 常德市| 平阴县| 南丰县| 二连浩特市| 邓州市| 出国| 达孜县| 平邑县| 白银市| 巴马| 西宁市| 大渡口区| 汶上县| 板桥市| 兴业县| 乳源| 平江县|