找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MODA 5 - Advances in Model-Oriented Data Analysis and Experimental Design; Proceedings of the 5 Anthony C. Atkinson,Luc Pronzato,Henry P. W

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:03:25 | 只看該作者
Asymptotic Upper Bounds for the Optimal Design Length in Factor Screening Experimentsvalues of ..and ..and n → ∞. We prove a general result allowing us in many particular cases to get the asymptotic law for . (n),n → ∞. We then apply this result to derive asymptotic upper bounds for the optimal design length in the problem of binary screening.
32#
發(fā)表于 2025-3-27 03:16:10 | 只看該作者
Breakdown Points of Estimators for Aspects of Linear Modelsr the question is considered whether a high breakdown point of the estimator .for β implies a high breakdown point of ..It is shown that the breakdown point behavior depends strongly on the design as is the case for estimating the whole parameter vector β.
33#
發(fā)表于 2025-3-27 07:10:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:19 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:09 | 只看該作者
Analytical Theory of E-Optimal Designs for Polynomial Regression on a Segmentf E—optimal designs as functions of the location point and the length of segments. Such an approach was developed in a number of previous author’s papers. Here we give a review of basic results obtained in this way. The theory is illustrated for quadratic regression on an arbitrary segment.
36#
發(fā)表于 2025-3-27 20:56:34 | 只看該作者
D-Optimal Designs for Weighted Polynomial Regression Without any Initial Termsrt points are equal, the optimal designs can be computed analytically. The supports of the optimal designs found are related to the zeros of an orthogonal polynomial or to an eigenvector of a special tridiagonal matrix.
37#
發(fā)表于 2025-3-27 22:38:36 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:58 | 只看該作者
40#
發(fā)表于 2025-3-28 13:38:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明光市| 枣阳市| 泉州市| 霍山县| 乌拉特中旗| 米脂县| 通辽市| 彭山县| 攀枝花市| 博客| 济宁市| 克山县| 波密县| 宝清县| 商城县| 肃宁县| 玉山县| 饶阳县| 治县。| 武川县| 西充县| 博野县| 孝昌县| 江孜县| 武穴市| 怀化市| 阿勒泰市| 历史| 玉田县| 当阳市| 万盛区| 吴旗县| 祁连县| 伽师县| 平湖市| 巢湖市| 乌兰浩特市| 丰镇市| 海兴县| 赫章县| 建始县|