找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MDATA: A New Knowledge Representation Model; Theory, Methods and Yan Jia,Zhaoquan Gu,Aiping Li Book 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 34938|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:07:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱MDATA: A New Knowledge Representation Model
副標(biāo)題Theory, Methods and
編輯Yan Jia,Zhaoquan Gu,Aiping Li
視頻videohttp://file.papertrans.cn/621/620094/620094.mp4
概述Introduces a new knowledge representation model called MDATA.Explores some key technologies of the MDATA model.Written by experts in the field
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: MDATA: A New Knowledge Representation Model; Theory, Methods and  Yan Jia,Zhaoquan Gu,Aiping Li Book 2021 Springer Nature Switzerland AG 20
描述Knowledge representation is an important task in understanding how humans think and learn. Although many representation models or cognitive models have been proposed, such as expert systems or knowledge graphs, they cannot represent procedural knowledge, i.e., dynamic knowledge, in an efficient way..This book introduces a new knowledge representation model called MDATA (Multi-dimensional Data Association and inTelligent Analysis). By modifying the representation of entities and relations in knowledge graphs, dynamic knowledge can be efficiently described with temporal and spatial characteristics. The MDATA model can be regarded as a high-level temporal and spatial knowledge graph model, which has strong capabilities for knowledge representation. This book introduces some key technologies in the MDATA model, such as entity recognition, relation extraction, entity alignment, and knowledge reasoning with spatiotemporal factors. The MDATA model can be applied in many critical applications and this book introduces some typical examples, such as network attack detection, social network analysis, and epidemic assessment...The MDATA model should be of interest to readers from many research
出版日期Book 2021
關(guān)鍵詞artificial intelligence; cognitive model; data mining; databases; entity alignment; entity recognition; in
版次1
doihttps://doi.org/10.1007/978-3-030-71590-8
isbn_softcover978-3-030-71589-2
isbn_ebook978-3-030-71590-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱MDATA: A New Knowledge Representation Model影響因子(影響力)




書目名稱MDATA: A New Knowledge Representation Model影響因子(影響力)學(xué)科排名




書目名稱MDATA: A New Knowledge Representation Model網(wǎng)絡(luò)公開度




書目名稱MDATA: A New Knowledge Representation Model網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱MDATA: A New Knowledge Representation Model被引頻次




書目名稱MDATA: A New Knowledge Representation Model被引頻次學(xué)科排名




書目名稱MDATA: A New Knowledge Representation Model年度引用




書目名稱MDATA: A New Knowledge Representation Model年度引用學(xué)科排名




書目名稱MDATA: A New Knowledge Representation Model讀者反饋




書目名稱MDATA: A New Knowledge Representation Model讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:01 | 只看該作者
978-3-030-71589-2Springer Nature Switzerland AG 2021
地板
發(fā)表于 2025-3-22 06:22:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:46:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:56:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:18:51 | 只看該作者
The Framework of the MDATA Computing Model,. The computing paradigm is also shifting from centralized computing in the cloud to collaborative computing in the front end, middle layer, and cloud. Therefore, traditional computing paradigms such as cloud computing and edge computing can no longer satisfy the evolving computing needs of big data
8#
發(fā)表于 2025-3-22 23:26:22 | 只看該作者
Spatiotemporal Data Cleaning and Knowledge Fusion, key technologies supporting knowledge fusion. In this chapter, we give a brief overview of some important technologies of knowledge fusion and data cleaning. We first briefly introduce the motivation and background of knowledge fusion and data cleaning. Then, we discuss some of the recent methods f
9#
發(fā)表于 2025-3-23 04:27:59 | 只看該作者
Chinese Named Entity Recognition: Applications and Challenges,nswering, reading comprehension, knowledge graph, machine translation and other fields. With the development of natural language processing techniques and the enhancement of text mining, the acquisition of semantic knowledge in text area becomes very important, and named entity recognition is the fo
10#
發(fā)表于 2025-3-23 09:07:52 | 只看該作者
Joint Extraction of Entities and Relations: An Advanced BERT-based Decomposition Method, tasks. However, most existing joint models cannot solve the problem of overlapping triples well. We propose an efficient end-to-end model for joint extraction of entities and overlapping relations in this chapter. Firstly, the BERT pre-training model is introduced to model the text more finely. Nex
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深州市| 清河县| 淄博市| 汕尾市| 浏阳市| 巴林左旗| 云阳县| 石门县| 乐昌市| 久治县| 宝山区| 巴东县| 永修县| 额济纳旗| 竹北市| 德江县| 芜湖县| 鄂温| 江安县| 松江区| 达州市| 凉山| 孝昌县| 莫力| 灵石县| 大冶市| 阿合奇县| 滕州市| 扶沟县| 裕民县| 宿松县| 郯城县| 博白县| 安乡县| 封开县| 广东省| 滨海县| 鸡西市| 灵丘县| 深州市| 合山市|