找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MATLAB Machine Learning Recipes; A Problem-Solution A Michael Paluszek,Stephanie Thomas Book 20192nd edition Michael Paluszek and Stephanie

[復(fù)制鏈接]
查看: 45946|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:01:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱MATLAB Machine Learning Recipes
副標(biāo)題A Problem-Solution A
編輯Michael Paluszek,Stephanie Thomas
視頻videohttp://file.papertrans.cn/621/620053/620053.mp4
概述Utilizes real world examples in MATLAB for major applications of machine learning in big data.Comes with complete working MATLAB source code.Shows how to use MATLAB graphics and visualization tools fo
圖書封面Titlebook: MATLAB Machine Learning Recipes; A Problem-Solution A Michael Paluszek,Stephanie Thomas Book 20192nd edition Michael Paluszek and Stephanie
描述Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem..?.All code in .MATLAB Machine Learning Recipes:? A Problem-Solution Approach. is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors .Michael Paluszek. and .Stephanie Thomas. show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more..What you‘ll learn:.How to write code for machine learning, adaptive control and estimation using MATLAB.How these three areas complement each other.How these three areas are needed for robust machine learning applications.How to use MATLAB graphics and visualization tools for machine learning.How to code real world examples in MATLAB for major applications of machine learning in big data.?.Who is this book for:.?The primary audiences are engineers, data scientists and students wanting a comprehensive and code cookbook rich in examples
出版日期Book 20192nd edition
關(guān)鍵詞matlab; machine learning; ML; programming; code; numerical; algorithms; AI; artificial intelligence; kalman f
版次2
doihttps://doi.org/10.1007/978-1-4842-3916-2
isbn_ebook978-1-4842-3916-2
copyrightMichael Paluszek and Stephanie Thomas 2019
The information of publication is updating

書目名稱MATLAB Machine Learning Recipes影響因子(影響力)




書目名稱MATLAB Machine Learning Recipes影響因子(影響力)學(xué)科排名




書目名稱MATLAB Machine Learning Recipes網(wǎng)絡(luò)公開度




書目名稱MATLAB Machine Learning Recipes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱MATLAB Machine Learning Recipes被引頻次




書目名稱MATLAB Machine Learning Recipes被引頻次學(xué)科排名




書目名稱MATLAB Machine Learning Recipes年度引用




書目名稱MATLAB Machine Learning Recipes年度引用學(xué)科排名




書目名稱MATLAB Machine Learning Recipes讀者反饋




書目名稱MATLAB Machine Learning Recipes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:50:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:54 | 只看該作者
5#
發(fā)表于 2025-3-22 09:02:59 | 只看該作者
6#
發(fā)表于 2025-3-22 14:43:58 | 只看該作者
7#
發(fā)表于 2025-3-22 20:48:13 | 只看該作者
Michael Paluszek,Stephanie Thomascriteria for analysis. Based on the findings of this study, it is finally examined and discussed what Germany (and other countries) can learn from Finland with regard to the topic of inclusion.978-3-658-40176-4978-3-658-40177-1
8#
發(fā)表于 2025-3-23 01:17:15 | 只看該作者
9#
發(fā)表于 2025-3-23 05:04:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:20 | 只看該作者
Michael Paluszek,Stephanie Thomascase, and the underlying lessons learned from it will have important implications for researchers and practitioners in the policing field.?978-3-319-00040-4978-3-319-00041-1Series ISSN 2192-8533 Series E-ISSN 2192-8541
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 松阳县| 长沙县| 葵青区| 赞皇县| 贵阳市| 潞西市| 苗栗县| 威信县| 成安县| 台南县| 雅安市| 郯城县| 临猗县| 建平县| 怀来县| 保亭| 彭山县| 咸宁市| 吴江市| 金塔县| 于田县| 光泽县| 微博| 资兴市| 锡林郭勒盟| 平果县| 上饶县| 丁青县| 松原市| 龙山县| 大厂| 鹰潭市| 榕江县| 扎兰屯市| 洛宁县| 特克斯县| 新安县| 小金县| 宁安市| 柳州市|