找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lyapunov Exponents; Proceedings of a Con Ludwig Arnold,Hans Crauel,Jean-Pierre Eckmann Conference proceedings 1991 Springer-Verlag Berlin H

[復制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 21:46:11 | 只看該作者
12#
發(fā)表于 2025-3-23 22:38:12 | 只看該作者
An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic mWe consider a piecewise monotonic and piecewise continuous map . on the interval. Under a weak condition on the derivative of ., we show for an ergodic invariant probability measure . that ..≤max{0, λ.}, where .. denotes the entropy and λ. the Ljapunov exponent of ..
13#
發(fā)表于 2025-3-24 02:56:22 | 只看該作者
The upper Lyapunov exponent of Sl(2,R) cocycles: Discontinuity and the problem of positivity,sitive almost everywhere..We prove that the set . is not empty. So, there are always points in . where the Lyapunov exponents are discontinuous..We show further that the decision whether a given cocycle is in . is at least as hard as the following cohomology problem: Can a given measurable set . be
14#
發(fā)表于 2025-3-24 07:45:49 | 只看該作者
15#
發(fā)表于 2025-3-24 11:21:41 | 只看該作者
Filtre de Kalman Bucy et exposants de Lyapounov,le comportement asymptotique du filtre, que nous avions obtenues à partir de propriétés de contraction, peuvent aussi être montrées en utilisant le théorème d‘Osseledets et un résultat de M. Wojtkowski. Le filtre est exponentiellement stable avec un taux déterminé par le plus petit exposant de Lyapo
16#
發(fā)表于 2025-3-24 16:18:50 | 只看該作者
17#
發(fā)表于 2025-3-24 19:40:01 | 只看該作者
18#
發(fā)表于 2025-3-25 00:53:21 | 只看該作者
19#
發(fā)表于 2025-3-25 05:51:08 | 只看該作者
20#
發(fā)表于 2025-3-25 08:55:28 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
八宿县| 曲阜市| 扎赉特旗| 江门市| 峨眉山市| 金堂县| 安阳县| 汪清县| 保定市| 通渭县| 宁城县| 湟源县| 漯河市| 浑源县| 东兰县| 阳高县| 溆浦县| 久治县| 沭阳县| 班玛县| 伊宁县| 含山县| 宜章县| 工布江达县| 玛多县| 怀安县| 获嘉县| 郴州市| 措美县| 屯留县| 尤溪县| 克山县| 安庆市| 罗山县| 贵溪市| 安吉县| 沙洋县| 双流县| 通许县| 泸定县| 石阡县|