找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lyapunov Exponents; Luís Barreira Book 2017 Springer International Publishing AG 2017 regularity.hyperbolicity.ergodic theory.multifractal

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:11:30 | 只看該作者
Lyapunov Exponents and Regularityarity in terms of the Grobman coefficient. This is part of what is usually called the abstract theory of Lyapunov exponents. We then illustrate the notions with two specific classes of Lyapunov exponents obtained from a linear dynamics. More precisely, we consider linear dynamics with discrete and c
42#
發(fā)表于 2025-3-28 21:16:30 | 只看該作者
43#
發(fā)表于 2025-3-28 23:33:06 | 只看該作者
44#
發(fā)表于 2025-3-29 05:21:04 | 只看該作者
Preservation of Lyapunov Exponentsyapunov exponent unchanged. In particular, we show that a sequence of invertible matrices can be reduced to a sequence of block matrices with upper-triangular blocks if and only if the space can be decomposed into an invariant splitting such that the angles between complementary invariant subspaces
45#
發(fā)表于 2025-3-29 08:01:29 | 只看該作者
Singular Valuesil the relation between singular values and Lyapunov exponents, both for discrete and continuous time. We first show that the general inequalities between the values of the Lyapunov exponent and of the upper exponential growth rates of the singular values are the best possible. More precisely, we sh
46#
發(fā)表于 2025-3-29 11:46:38 | 只看該作者
Characterizations of Regularityl growth rates of the singular values and in terms of a certain symmetrized version of the dynamics. We consider both discrete and continuous time. Moreover, for a sequence of matrices, we introduce a third regularity coefficient—the Lyapunov coefficient—and we relate it to the Grobman and Perron co
47#
發(fā)表于 2025-3-29 18:29:33 | 只看該作者
Tempered Dichotomiesistence of a nonzero Lyapunov exponent gives rise to hyperbolicity and how this relates to the theory of regularity. We start with the simpler case of sequences of matrices with a negative Lyapunov exponent, for which the exposition is simpler. We also consider the notion of strong tempered spectrum
48#
發(fā)表于 2025-3-29 21:46:36 | 只看該作者
Lyapunov Sequenceswith the simpler case of a tempered dichotomy, we show in this case that the notion can be completely characterized in terms of the existence of a strict quadratic Lyapunov sequence. This includes explicitly constructing such a sequence for any tempered dichotomy. The chapter can be considered as a
49#
發(fā)表于 2025-3-29 23:56:26 | 只看該作者
Cocycles and Lyapunov Exponentsbased on the results on singular values established in Chap. . combined with the subadditive ergodic theorem. We also show how a nonvanishing Lyapunov exponent for a cocycle gives rise to nonuniform hyperbolicity. In particular, the structure that the theorem determines is fundamental in many develo
50#
發(fā)表于 2025-3-30 04:42:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 芦溪县| 辽中县| 江城| 闸北区| 北宁市| 临清市| 紫阳县| 崇义县| 柳州市| 华蓥市| 北京市| 盘山县| 兰州市| 拉萨市| 什邡市| 城市| 岚皋县| 济阳县| 逊克县| 太白县| 贵州省| 邓州市| 肇源县| 丰都县| 平度市| 甘肃省| 香河县| 潜江市| 朔州市| 琼海市| 界首市| 文昌市| 马公市| 永泰县| 当涂县| 洛川县| 秦安县| 正镶白旗| 郓城县| 宾川县|