找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lundberg Approximations for Compound Distributions with Insurance Applications; Gordon E. Willmot,X. Sheldon Lin Book 2001 Springer Scienc

[復(fù)制鏈接]
樓主: expenditure
21#
發(fā)表于 2025-3-25 03:37:11 | 只看該作者
Lundberg Approximations for Compound Distributions with Insurance Applications
22#
發(fā)表于 2025-3-25 09:05:16 | 只看該作者
Reliability background,993, 1994) for more details. Applications of classification of life distributions have been found in insurance and actuarial science. In particular, these distributions have been used to classify claim size distributions as well as the number of claims distribution in insurance portfolio management.
23#
發(fā)表于 2025-3-25 13:05:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:14:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:02:43 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:46 | 只看該作者
Defective renewal equations,cations are available for compound geometric tails, and (iii) there exists a satisfactory approximation to compound geometric tails. These desirable properties are discussed in chapters 7 and 8. Motivated by the fact that a compound geometric distribution may be viewed as the solution of a special d
28#
發(fā)表于 2025-3-26 11:53:52 | 只看該作者
The severity of ruin,ure representation becomes evident when an explicit expression for the conditional distribution is derived in the special case when the claim amount distribution is an Erlang mixture or a general Erlang mixture. The approach of this chapter follows that of Willmot and Lin (1998) and Willmot (2000).
29#
發(fā)表于 2025-3-26 14:16:28 | 只看該作者
Book 2001n Willmot and Lin (1994), followed by the nonexpo- nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. Th
30#
發(fā)表于 2025-3-26 18:50:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奎屯市| 电白县| 江永县| 东乌珠穆沁旗| 常山县| 大竹县| 郸城县| 星座| 磴口县| 广灵县| 尉犁县| 贵港市| 义马市| 巴林左旗| 诸城市| 浑源县| 白玉县| 漠河县| 昌江| 浦北县| 榆社县| 渝北区| 武义县| 杭锦后旗| 龙州县| 肇源县| 剑河县| 会同县| 富平县| 鄂伦春自治旗| 囊谦县| 齐河县| 凤庆县| 安阳县| 宁强县| 汾西县| 福鼎市| 六盘水市| 凌源市| 揭东县| 元江|