找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lp-Theory for Incompressible Newtonian Flows; Energy Preserving Bo Matthias K?hne Book 2013 Springer Fachmedien Wiesbaden 2013 Energy Prese

[復(fù)制鏈接]
查看: 54611|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:20:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lp-Theory for Incompressible Newtonian Flows
副標題Energy Preserving Bo
編輯Matthias K?hne
視頻videohttp://file.papertrans.cn/589/588940/588940.mp4
概述Publication in the field of technical sciences?.Includes supplementary material:
圖書封面Titlebook: Lp-Theory for Incompressible Newtonian Flows; Energy Preserving Bo Matthias K?hne Book 2013 Springer Fachmedien Wiesbaden 2013 Energy Prese
描述.This thesis is devoted to the study of the basic equations of fluid dynamics. First Matthias K?hne focuses on the derivation of a class of boundary conditions, which is based on energy estimates, and, thus, leads to physically relevant conditions. The derived class thereby contains many prominent artificial boundary conditions, which have proved to be suitable for direct numerical simulations involving artificial boundaries. The second part is devoted to the development of a complete Lp-theory for the resulting initial boundary value problems in bounded smooth domains, i.e. the Navier-Stokes equations complemented by one of the derived energy preserving boundary conditions. Finally, the third part of this thesis focuses on the corresponding theory for bounded, non-smooth domains, where the boundary of the domain is allowed to contain a finite number of edges, provided the smooth components of the boundary that meet at such an edge are locally orthogonal..
出版日期Book 2013
關(guān)鍵詞Energy Preserving Boundary Condition; Mathematical Fluid Dynamics; Maximal Lp-Regularity; Navier-Stokes
版次1
doihttps://doi.org/10.1007/978-3-658-01052-2
isbn_softcover978-3-658-01051-5
isbn_ebook978-3-658-01052-2
copyrightSpringer Fachmedien Wiesbaden 2013
The information of publication is updating

書目名稱Lp-Theory for Incompressible Newtonian Flows影響因子(影響力)




書目名稱Lp-Theory for Incompressible Newtonian Flows影響因子(影響力)學科排名




書目名稱Lp-Theory for Incompressible Newtonian Flows網(wǎng)絡(luò)公開度




書目名稱Lp-Theory for Incompressible Newtonian Flows網(wǎng)絡(luò)公開度學科排名




書目名稱Lp-Theory for Incompressible Newtonian Flows被引頻次




書目名稱Lp-Theory for Incompressible Newtonian Flows被引頻次學科排名




書目名稱Lp-Theory for Incompressible Newtonian Flows年度引用




書目名稱Lp-Theory for Incompressible Newtonian Flows年度引用學科排名




書目名稱Lp-Theory for Incompressible Newtonian Flows讀者反饋




書目名稱Lp-Theory for Incompressible Newtonian Flows讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:35:36 | 只看該作者
http://image.papertrans.cn/l/image/588940.jpg
地板
發(fā)表于 2025-3-22 07:05:43 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:25 | 只看該作者
,-Theory for Incompressible Newtonian FlowsThis chapter is devoted to the development of an ..-Theory for incompressible Newtonian flows in bounded, smooth domains subject to one of the energy preserving respectively artificial boundary conditions introduced in Chapter 2.
6#
發(fā)表于 2025-3-22 14:40:38 | 只看該作者
Maximal ,,-Regularity in a HalfspaceThis chapter is devoted to the study of the Stokes equations in a halfspace subject to one of the energy preserving respectively artificial boundary conditions introduced 2.19, 2.22 and 2.23.
7#
發(fā)表于 2025-3-22 19:55:10 | 只看該作者
8#
發(fā)表于 2025-3-22 21:57:07 | 只看該作者
Maximal ,,-Regularity in a Bounded Smooth DomainThis chapter is devoted to the study of the Stokes equations subject to one of the energy preserving respectively artificial boundary conditions introduced 2.19, 2.22 and 2.23 in a bounded domain . with boundary . of class .., i. e. we prove Theorem 3.30.
9#
發(fā)表于 2025-3-23 03:08:26 | 只看該作者
The Navier-Stokes Equations course, these basic equations of fluid dynamics as well as their derivation can be found in many popular and classical books, see e. g. [Lam32] or [Bat00]. However, we want to keep this thesis as self-contained as possible and present a short derivation of the Navier-Stokes equations based on the principles of continuum mechanics.
10#
發(fā)表于 2025-3-23 07:33:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平山县| 青海省| 屯留县| 巢湖市| 文安县| 大足县| 新干县| 兴文县| 新竹县| 甘南县| 缙云县| 文成县| 鄂州市| 云龙县| 和政县| 平定县| 五台县| 钟山县| 福鼎市| 宝鸡市| 钦州市| 哈巴河县| 丘北县| 武陟县| 罗源县| 万荣县| 延寿县| 莱州市| 呼玛县| 新巴尔虎左旗| 蓬莱市| 丽江市| 扎兰屯市| 台江县| 深水埗区| 襄樊市| 台前县| 曲阜市| 色达县| 汉阴县| 麟游县|