找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Low-Rank and Sparse Modeling for Visual Analysis; Yun Fu Book 2014 Springer International Publishing Switzerland 2014 Compressive Sensing.

[復(fù)制鏈接]
查看: 49931|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:39:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis
編輯Yun Fu
視頻videohttp://file.papertrans.cn/589/588906/588906.mp4
概述Covers the most state-of-the-art topics of sparse and low-rank modeling.Examines the theory of sparse and low-rank analysis to the real-world practice of sparse and low-rank analysis.Contributions fro
圖書(shū)封面Titlebook: Low-Rank and Sparse Modeling for Visual Analysis;  Yun Fu Book 2014 Springer International Publishing Switzerland 2014 Compressive Sensing.
描述This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction.?Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.
出版日期Book 2014
關(guān)鍵詞Compressive Sensing; Computer Vision; Dimensionality Reduction; Low-Rank Approximation; Low-Rank Recover
版次1
doihttps://doi.org/10.1007/978-3-319-12000-3
isbn_softcover978-3-319-35567-2
isbn_ebook978-3-319-12000-3
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis影響因子(影響力)




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis被引頻次




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis被引頻次學(xué)科排名




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis年度引用




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis年度引用學(xué)科排名




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis讀者反饋




書(shū)目名稱Low-Rank and Sparse Modeling for Visual Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:19:06 | 只看該作者
Latent Low-Rank Representation,x itself is chosen as the dictionary, resulting in a powerful method that is useful for both subspace clustering and error correction. However, such a strategy may depress the performance of LRR, especially when the observations are insufficient and/or grossly corrupted. In this chapter we therefore
板凳
發(fā)表于 2025-3-22 02:57:58 | 只看該作者
Scalable Low-Rank Representation,under large-scale settings. In this chapter we therefore address the problem of solving nuclear norm regularized optimization problems (NNROPs), which contain a category of problems including LRR. Based on the fact that the optimal solution matrix to an NNROP is often low-rank, we revisit the classi
地板
發(fā)表于 2025-3-22 05:53:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:14 | 只看該作者
Low-Rank Transfer Learning,beled data for the new task may save considerable labeling efforts. However, data in the auxiliary databases are often obtained under conditions that differ from those in the new task. Transfer learning provides techniques for transferring learned knowledge from a . domain?to a . domain by mitigatin
6#
發(fā)表于 2025-3-22 15:51:53 | 只看該作者
Sparse Manifold Subspace Learning,ods considering global data structure e.g., PCA, LDA, SMSL aims at preserving the local neighborhood structure on the data manifold and provides a more accurate data representation via locality sparse coding. In addition, it removes the common concerns of many local structure based subspace learning
7#
發(fā)表于 2025-3-22 20:06:42 | 只看該作者
Low Rank Tensor Manifold Learning,s fact, two interesting questions naturally arise: How does the human brain represent these tensor perceptions in a “manifold” way, and how can they be recognized on the “manifold”? In this chapter, we present a supervised model to learn the intrinsic structure of the tensors embedded in a high dime
8#
發(fā)表于 2025-3-22 23:49:57 | 只看該作者
9#
發(fā)表于 2025-3-23 03:46:37 | 只看該作者
Low-Rank Outlier Detection,tion (SVDD) model. Different from the traditional SVDD, our approach learns multiple hyper-spheres to fit the normal data. The low-rank constraint helps us group the complicated dataset into several clusters dynamically. We present both primal and dual solutions to solve this problem, and provide th
10#
發(fā)表于 2025-3-23 06:30:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 平乡县| 德钦县| 滁州市| 大同市| 洪泽县| 黄大仙区| 上虞市| 翁源县| 易门县| 灵璧县| 泰兴市| 青神县| 太康县| 阳春市| 和田市| 邯郸市| 顺义区| 城市| 崇文区| 安康市| 忻城县| 通城县| 扬州市| 吉首市| 无极县| 田东县| 大余县| 清徐县| 东山县| 兴海县| 漳州市| 晴隆县| 新晃| 晋中市| 阳曲县| 翼城县| 马公市| 唐海县| 荥经县| 武定县|