找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lorentzian Geometry and Related Topics; GeLoMa 2016, Málaga, María A. Ca?adas-Pinedo,José Luis Flores,Francisco Conference proceedings 2017

[復(fù)制鏈接]
樓主: incontestable
31#
發(fā)表于 2025-3-26 22:26:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:09:35 | 只看該作者
María A. Ca?adas-Pinedo,José Luis Flores,Francisco
33#
發(fā)表于 2025-3-27 06:52:37 | 只看該作者
2194-1009 s. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field.978-3-030-09767-7978-3-319-66290-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
34#
發(fā)表于 2025-3-27 09:55:46 | 只看該作者
Eva M. Alarcón,Alma L. Albujer,Magdalena Caballero
35#
發(fā)表于 2025-3-27 16:00:42 | 只看該作者
J. Carlos Díaz-Ramos,Miguel Domínguez-Vázquez,Víctor Sanmartín-López
36#
發(fā)表于 2025-3-27 18:46:16 | 只看該作者
Spacelike Hypersurfaces in the Lorentz-Minkowski Space with the Same Riemannian and Lorentzian Meaner the hyperplane ., our hypersurfaces are locally determined by the solutions to a certain partial differential equation called the . hypersurface equation. The character of this equation is studied, and some uniqueness results for its related Dirichlet problem are given.
37#
發(fā)表于 2025-3-28 00:23:45 | 只看該作者
A Study in Stationary: Geometric Properties of Stationary Regions and Regularity of Their Horizons,It is the purpose of this paper to give a review, without any attempt at comprehensiveness, of some global geometric consequences of the existence of a complete Killing vector field which becomes timelike at some open set, the connected components of which are referred to as .. If the Killing field
38#
發(fā)表于 2025-3-28 04:20:02 | 只看該作者
Conference proceedings 2017 field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathematics and physics. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field.
39#
發(fā)表于 2025-3-28 07:22:19 | 只看該作者
7樓
40#
發(fā)表于 2025-3-28 14:19:13 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 桐柏县| 清水县| 南宁市| 宜丰县| 门头沟区| 红安县| 陇南市| 博罗县| 安乡县| 南投市| 梅州市| 璧山县| 大洼县| 本溪市| 垦利县| 舟山市| 永新县| 铁力市| 霍山县| 丹棱县| 永顺县| 浏阳市| 蓬莱市| 台湾省| 浪卡子县| 冷水江市| 五台县| 平远县| 舟曲县| 绥芬河市| 南岸区| 安陆市| 巴彦县| 仁寿县| 洛隆县| 皋兰县| 鄱阳县| 永修县| 桂平市| 西平县|