找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Looking at Numbers; Tom Johnson,Franck Jedrzejewski Book 2014 Springer Basel 2014 nature.platonic.symmetry

[復制鏈接]
樓主: Bunion
11#
發(fā)表于 2025-3-23 11:24:51 | 只看該作者
(9,4,3),ugh that one should be able to see how it works, and since by definition each pair occurs three times in three different blocks of four, all that is necessary is to write out the 36 pairs and connect each pair with the three other pairs that form one of the 18 blocks of the system. I could imagine a
12#
發(fā)表于 2025-3-23 15:52:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:51 | 只看該作者
Loops,, but I’ve written an awful lot of musical loops, and there are a great many ways of doing this. Most of the loops we’ll be discussing here might better be called “rhythmic canons”, a term introduced in . in 1991-1992 in an article by the Rumanian mathematician and music theorist Dan Tudor Vuza. Bas
14#
發(fā)表于 2025-3-23 23:20:05 | 只看該作者
Juggling,s in the most obvious ways. After learning to throw three balls, keeping each one in the air for three beats, jugglers went on to four balls, keeping each one in the air for four beats, and then on to higher and higher throws with more and more balls or plates or bowling pins or whatever. The result
15#
發(fā)表于 2025-3-24 02:44:27 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:38 | 只看該作者
17#
發(fā)表于 2025-3-24 13:50:02 | 只看該作者
Book 2014 patterns he finds while “l(fā)ooking at numbers” can also be explored in drawings. This book focuses on such drawings, their beauty and their mathematical meaning. The accompanying comments were written in collaboration with the mathematician Franck Jedrzejewski..?.
18#
發(fā)表于 2025-3-24 16:37:27 | 只看該作者
Tom Johnson,Franck JedrzejewskiMathematics and music from a platonic point of view.Numbers as Pythagoras might have seen them.Numbers producing images and music too ?.Includes supplementary material:
19#
發(fā)表于 2025-3-24 19:45:44 | 只看該作者
http://image.papertrans.cn/l/image/588628.jpg
20#
發(fā)表于 2025-3-25 03:04:01 | 只看該作者
Permutations,mber in one of these drawings represents a particular note in a particular composition, but all the numbers here represent a particular point in some sort of logical sequence, in some system of permutations or combinations, in some network of sets and subsets.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安徽省| 宜君县| 博罗县| 黄山市| 安龙县| 资阳市| 肥乡县| 左云县| 和硕县| 和平区| 富民县| 姚安县| 莒南县| 东光县| 新龙县| 喀喇沁旗| 府谷县| 东阳市| 镇远县| 区。| 龙游县| 龙江县| 平利县| 安图县| 福泉市| 舒城县| 永新县| 射洪县| 通道| 应用必备| 红安县| 荥经县| 疏勒县| 贞丰县| 雷州市| 边坝县| 屏南县| 霍林郭勒市| 虹口区| 宜丰县| 满城县|