找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Looking at Numbers; Tom Johnson,Franck Jedrzejewski Book 2014 Springer Basel 2014 nature.platonic.symmetry

[復制鏈接]
樓主: Bunion
11#
發(fā)表于 2025-3-23 11:24:51 | 只看該作者
(9,4,3),ugh that one should be able to see how it works, and since by definition each pair occurs three times in three different blocks of four, all that is necessary is to write out the 36 pairs and connect each pair with the three other pairs that form one of the 18 blocks of the system. I could imagine a
12#
發(fā)表于 2025-3-23 15:52:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:51 | 只看該作者
Loops,, but I’ve written an awful lot of musical loops, and there are a great many ways of doing this. Most of the loops we’ll be discussing here might better be called “rhythmic canons”, a term introduced in . in 1991-1992 in an article by the Rumanian mathematician and music theorist Dan Tudor Vuza. Bas
14#
發(fā)表于 2025-3-23 23:20:05 | 只看該作者
Juggling,s in the most obvious ways. After learning to throw three balls, keeping each one in the air for three beats, jugglers went on to four balls, keeping each one in the air for four beats, and then on to higher and higher throws with more and more balls or plates or bowling pins or whatever. The result
15#
發(fā)表于 2025-3-24 02:44:27 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:38 | 只看該作者
17#
發(fā)表于 2025-3-24 13:50:02 | 只看該作者
Book 2014 patterns he finds while “l(fā)ooking at numbers” can also be explored in drawings. This book focuses on such drawings, their beauty and their mathematical meaning. The accompanying comments were written in collaboration with the mathematician Franck Jedrzejewski..?.
18#
發(fā)表于 2025-3-24 16:37:27 | 只看該作者
Tom Johnson,Franck JedrzejewskiMathematics and music from a platonic point of view.Numbers as Pythagoras might have seen them.Numbers producing images and music too ?.Includes supplementary material:
19#
發(fā)表于 2025-3-24 19:45:44 | 只看該作者
http://image.papertrans.cn/l/image/588628.jpg
20#
發(fā)表于 2025-3-25 03:04:01 | 只看該作者
Permutations,mber in one of these drawings represents a particular note in a particular composition, but all the numbers here represent a particular point in some sort of logical sequence, in some system of permutations or combinations, in some network of sets and subsets.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 13:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晴隆县| 盈江县| 灌南县| 聊城市| 呼图壁县| 高陵县| 彰化市| 瑞金市| 上思县| 增城市| 墨脱县| 霍林郭勒市| 广河县| 将乐县| 固阳县| 彩票| 福泉市| 龙泉市| 玉门市| 泰州市| 巴楚县| 昌乐县| 宜兰市| 丰台区| 平江县| 商南县| 泗洪县| 浦东新区| 大邑县| 阿克苏市| 顺平县| 崇明县| 松江区| 昔阳县| 大洼县| 浦江县| 抚顺县| 松江区| 五家渠市| 大邑县| 大庆市|