找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning; A Practical Strategy Alireza Entezami,Bahareh Behka

[復(fù)制鏈接]
查看: 20818|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:05:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning
副標題A Practical Strategy
編輯Alireza Entezami,Bahareh Behkamal,Carlo De Michele
視頻videohttp://file.papertrans.cn/589/588580/588580.mp4
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning; A Practical Strategy Alireza Entezami,Bahareh Behka
描述.This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and r
出版日期Book 2024
關(guān)鍵詞Structural Health Monitoring; SHM; environmental and operational changes; civil structures; Hamiltonian
版次1
doihttps://doi.org/10.1007/978-3-031-53995-4
isbn_softcover978-3-031-53994-7
isbn_ebook978-3-031-53995-4Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2024
The information of publication is updating

書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning影響因子(影響力)




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning影響因子(影響力)學科排名




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning網(wǎng)絡(luò)公開度




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning被引頻次




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning被引頻次學科排名




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning年度引用




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning年度引用學科排名




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning讀者反饋




書目名稱Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:29 | 只看該作者
Simulating Reality: Numerical Assessments of a Bridge Health Monitoring,l. Notably, this process is difficult and time-consuming for long-term monitoring. For this issue, this chapter aims to validate the proposed probabilistic unsupervised learning method via simulated displacement responses of a numerical model of a real-world bridge structure. On this basis, the nume
地板
發(fā)表于 2025-3-22 04:59:53 | 只看該作者
From Theory to Reality: Advanced SHM Methods to the Tadcaster Bridge,lly in long-term monitoring programs. In this chapter, real-world applications of the proposed unsupervised learning methods (i.e., HMC-DAE-MD, HMC-UTSL-MD, HMC-DTL-MD, HMC-ODTL-EMD and SLS-ODTL-EMD) developed for coping with the limitation of small data are investigated by using a small set of disp
5#
發(fā)表于 2025-3-22 09:46:56 | 只看該作者
Conclusions and Prospects for Structural Health Monitoring,echnology of remote sensing and machine learning. For this reason, various unsupervised learning methods have been proposed to detect any abnormal conditions in civil structures under unknown EOCs using small and large sets of displacement responses obtained from SAR images. This chapter aims to men
6#
發(fā)表于 2025-3-22 16:44:41 | 只看該作者
Alireza Entezami,Bahareh Behkamal,Carlo De Michele. . . . . . . . . . . . . . . . . . 11 I. Markttransparenz durch Marktforschung ........................ 11 Ir. Katalog des Informationsbedarfs ................................ 12 a. Nachfrage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 . . . . . . . . . . . . . b. Instru
7#
發(fā)表于 2025-3-22 20:09:00 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:40 | 只看該作者
Alireza Entezami,Bahareh Behkamal,Carlo De Michelet es eher der Blick auf Menschen als handlungsm?chtige Akteur_innen, die Lebenslagen aktiv bew?ltigen und eigene Vorstellungen vom ?guten Leben‘ sowie von Hilfebedarfen haben? Oder werden sie vor allem als Angeh?rige hilfsbedürftiger Zielgruppen (z.B. Behinderte, Flüchtlinge, Frauen) gesehen, über d
9#
發(fā)表于 2025-3-23 01:50:58 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄山市| 呼玛县| 北安市| 东丰县| 祁连县| 康乐县| 双鸭山市| 竹溪县| 黔江区| 岳阳市| 陆川县| 青海省| 芦山县| 化隆| 乾安县| 怀远县| 闸北区| 启东市| 沧州市| 营口市| 天津市| 延长县| 上林县| 新河县| 若羌县| 岗巴县| 淮北市| 麻城市| 六枝特区| 德惠市| 恩平市| 彝良县| 垣曲县| 藁城市| 海盐县| 黄梅县| 常熟市| 晋城| 黎平县| 理塘县| 定陶县|