找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Long-Range Dependence and Sea Level Forecasting; Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov Book 2013 The Author(s) 2013 ARFIMA models.

[復(fù)制鏈接]
查看: 35437|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:09:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Long-Range Dependence and Sea Level Forecasting
編輯Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov
視頻videohttp://file.papertrans.cn/589/588548/588548.mp4
概述A unique statistical approach to estimate sea level forecasts.Case studies included.Written by experts in the field
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Long-Range Dependence and Sea Level Forecasting;  Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov Book 2013 The Author(s) 2013 ARFIMA models.
描述.?This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution..There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period..This book?will be usef
出版日期Book 2013
關(guān)鍵詞ARFIMA models; Sea level change; climate change; confidence interval estimation; forecast updating; long-
版次1
doihttps://doi.org/10.1007/978-3-319-01505-7
isbn_softcover978-3-319-01504-0
isbn_ebook978-3-319-01505-7Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2013
The information of publication is updating

書目名稱Long-Range Dependence and Sea Level Forecasting影響因子(影響力)




書目名稱Long-Range Dependence and Sea Level Forecasting影響因子(影響力)學(xué)科排名




書目名稱Long-Range Dependence and Sea Level Forecasting網(wǎng)絡(luò)公開度




書目名稱Long-Range Dependence and Sea Level Forecasting網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Long-Range Dependence and Sea Level Forecasting被引頻次




書目名稱Long-Range Dependence and Sea Level Forecasting被引頻次學(xué)科排名




書目名稱Long-Range Dependence and Sea Level Forecasting年度引用




書目名稱Long-Range Dependence and Sea Level Forecasting年度引用學(xué)科排名




書目名稱Long-Range Dependence and Sea Level Forecasting讀者反饋




書目名稱Long-Range Dependence and Sea Level Forecasting讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:06:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:41:06 | 只看該作者
Summary and Conclusion,f Caspian Sea level time series, renders the confidence band estimation and forecast updating components of forecasting quite significant for the forecast performance. In this chapter, a brief summary and conclusions are provided for the monograph “Long-Range Dependence and Sea Level Forecasting”.
地板
發(fā)表于 2025-3-22 05:56:15 | 只看該作者
Long-Range Dependence and ARFIMA Models,In this chapter, long-range dependence concept, Hurst phenomenon and ARFIMA models are introduced and the earlier work on these subjects are reviewed. Several methodologies are introduced for the estimation of long-range dependence index (Hurst number or fractional difference parameter).
5#
發(fā)表于 2025-3-22 12:16:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:25:19 | 只看該作者
Ali Ercan,M. Levent Kavvas,Rovshan K. AbbasovA unique statistical approach to estimate sea level forecasts.Case studies included.Written by experts in the field
7#
發(fā)表于 2025-3-22 18:37:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:53 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:31 | 只看該作者
Book 2013rst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models
10#
發(fā)表于 2025-3-23 06:29:00 | 只看該作者
Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak,el change is estimated in time by assimilating the global mean sea level projections from the AOGCM simulations to the satellite altimeter observations along the subject coastlines. Details of this case study were presented in Ercan et al. (2013) at Hydrol Process, 27(3):367–377.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙山县| 绥芬河市| 黔东| 璧山县| 阿坝县| 玉溪市| 奎屯市| 闵行区| 锡林浩特市| 双柏县| 澄迈县| 桐柏县| 澄城县| 德钦县| 承德县| 肇东市| 龙江县| 泰兴市| 北川| 肇庆市| 贵溪市| 兴山县| 吉安市| 尼木县| 四川省| 上虞市| 巢湖市| 张北县| 西乌珠穆沁旗| 蓬安县| 河间市| 芦溪县| 杂多县| 南城县| 泸水县| 庆城县| 巴林左旗| 竹山县| 军事| 竹溪县| 兴文县|