找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Long Term Evolution of Planetary Systems; Proceedings of the A R. Dvorak,J. Henrard Conference proceedings 1988 Kluwer Academic Publishers

[復(fù)制鏈接]
查看: 23027|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:40:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Long Term Evolution of Planetary Systems
副標(biāo)題Proceedings of the A
編輯R. Dvorak,J. Henrard
視頻videohttp://file.papertrans.cn/589/588530/588530.mp4
圖書封面Titlebook: Long Term Evolution of Planetary Systems; Proceedings of the A R. Dvorak,J. Henrard Conference proceedings 1988 Kluwer Academic Publishers
出版日期Conference proceedings 1988
關(guān)鍵詞Celestial mechanics; asteroid; dynamics; gravitation; gravity; mechanics; planet; stability
版次1
doihttps://doi.org/10.1007/978-94-009-2285-3
isbn_softcover978-94-010-7525-1
isbn_ebook978-94-009-2285-3
copyrightKluwer Academic Publishers 1988
The information of publication is updating

書目名稱Long Term Evolution of Planetary Systems影響因子(影響力)




書目名稱Long Term Evolution of Planetary Systems影響因子(影響力)學(xué)科排名




書目名稱Long Term Evolution of Planetary Systems網(wǎng)絡(luò)公開度




書目名稱Long Term Evolution of Planetary Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Long Term Evolution of Planetary Systems被引頻次




書目名稱Long Term Evolution of Planetary Systems被引頻次學(xué)科排名




書目名稱Long Term Evolution of Planetary Systems年度引用




書目名稱Long Term Evolution of Planetary Systems年度引用學(xué)科排名




書目名稱Long Term Evolution of Planetary Systems讀者反饋




書目名稱Long Term Evolution of Planetary Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:17 | 只看該作者
Overview: 978-94-010-7525-1978-94-009-2285-3
板凳
發(fā)表于 2025-3-22 02:55:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:15:15 | 只看該作者
5#
發(fā)表于 2025-3-22 11:18:34 | 只看該作者
Normal Co-Ordinates and Asymptotic Expansions in Resonance Cases in Celestial Mechanics the mutual perturbations in a planetary or satellite system, entirely in periodic terms, can be carried out after the use of a transformation of the variables which brings the quadratic terms of the Hamiltonian to a suitable normal form. A method for finding such a transformation is described.
6#
發(fā)表于 2025-3-22 14:41:01 | 只看該作者
7#
發(fā)表于 2025-3-22 19:35:45 | 只看該作者
A Small Example of Arnold Diffusionees of freedom..This diffusion is an extremely slow phenomenon very difficult to analyse and we have tried to obtain some numerical examples in a system as simple as possible..The direct method is hopeless but the reverse method seems to be successful.
8#
發(fā)表于 2025-3-22 21:18:27 | 只看該作者
Integration Theory for the Restricted Three-Body-Problem with Application to P-Type Orbitsndent of the Jacobian integral. As it has been demonstrated in some work by G. Cantopoulos, 1967 (Ref. 1) a constant of motion can be derived by expressing the angular momentum in rotating coordinates as a function of the coordinates.
9#
發(fā)表于 2025-3-23 01:38:17 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:13 | 只看該作者
Alternative Representation of Planetary PerturbationsAn attempt is made to find a representation of planetary perturbations which does not require a Fourier expansion. For the planetary type three body problem a sequence of canonical transformations is given based on Landen transformations coupled with a rescaling of the time. The expansion is carried out to the order 2 in the Hamiltonian.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 玛多县| 乌兰县| 安阳市| 银川市| 霍城县| 彭泽县| 曲靖市| 大港区| 江西省| 农安县| 庄浪县| 龙里县| 三门峡市| 广元市| 于都县| 阿尔山市| 黔西| 延长县| 汝阳县| 台北县| 邛崃市| 永年县| 云龙县| 南通市| 林芝县| 平定县| 镇远县| 柳林县| 泽库县| 安阳县| 苍溪县| 高台县| 江阴市| 手游| 黄浦区| 诸城市| 信宜市| 永善县| 三原县| 银川市|