找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Logistic Regression with Missing Values in the Covariates; Werner Vach Book 1994 Springer-Verlag New York, Inc. 1994 Conditional probabili

[復(fù)制鏈接]
樓主: 方言
31#
發(fā)表于 2025-3-26 23:56:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:20 | 只看該作者
Generalizations for More Than two Covariates mention that the robustness against violations of the MAR assumption remains valid of course, too. Thus we restrict our attention in this chapter to ML Estimation, Semiparametric ML Estimation, and Estimation of the Score Function.
33#
發(fā)表于 2025-3-27 05:29:45 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:18:35 | 只看該作者
36#
發(fā)表于 2025-3-27 18:30:40 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:58 | 只看該作者
The Complete Data CaseLet be . a binary outcome variable, . a covariate with categories 1,…, . and . a covariate with categories 1,…, .. In a logistic model we assume . with parameter restrictions β. . 0 and β. . 0. Λ(.):= 1/(1 + .) denotes the logistic function. We consider the covariates as random variables, and parametrize their joint distribution by ..
38#
發(fā)表于 2025-3-28 05:15:57 | 只看該作者
39#
發(fā)表于 2025-3-28 06:17:15 | 只看該作者
Quantitative Comparisons: Results of Finite Sample Size Simulation StudiesThe investigations of the last chapter were based on asymptotic arguments. It remains to show that the results of the comparisons are transferable to the finite sample size. Moreover, the properties of the methods themselves have been examined so far only asymptotically, and the estimation of variance is also based on asymptotic results.
40#
發(fā)表于 2025-3-28 12:10:48 | 只看該作者
https://doi.org/10.1007/978-1-4612-2650-5Conditional probability; Finite; Likelihood; Logistic Regression; Variance; expectation–maximization algo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四会市| 张家口市| 郎溪县| 嵊州市| 淮安市| 巴南区| 丹阳市| 福鼎市| 江北区| 多伦县| 屯门区| 获嘉县| 渭南市| 太仓市| 龙南县| 壤塘县| 泸水县| 绥宁县| 博罗县| 芜湖市| 壤塘县| 庐江县| 集贤县| 金平| 乡城县| 青阳县| 盐池县| 贺州市| 余姚市| 阿图什市| 瓮安县| 菏泽市| 南木林县| 烟台市| 城市| 诸城市| 宜城市| 平凉市| 北川| 龙口市| 慈利县|